Matisse® 9.0.8
Release Notes

February 2013

Matisse 9.0.8 Release Notes
Copyright ©1992-2013 Matisse Software Inc. All Rights Reserved.

This manual is copyrighted. Under the copyright laws, this manual may not be
copied, in whole or in part, without prior written consent of Matisse Software
Inc. This manual is provided under the terms of a license between Matisse
Software Inc. and the recipient, and its use is subject to the terms of that
license.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the
government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-
7013 and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. and
international patents.

TRADEMARKS: Matisse and the Matisse logo are registered trademarks of
Matisse Software Inc. All other trademarks belong to their respective owners.

PDF generated 18 February 2013

Contents

New Featuresin Matisse 9.0 iiiiinnn. 6
1.1 OVerview ... e 6
1.2 Matisse Core Model 6
Namespacesttt 6
Schemanames 7
Array datatypes 7
1.3 Enterprise Manager Tool i, 7
Schema Viewer. 7
Query EQItors 7
ExportSchema 7
Import/Export Data 7
Import XML ... 7
Export XML 7
Scheduled Tasks. 7
Audit Log. . ..o 8
Logand Resourcefiles 8
Manager License. 8
Graphicsand L&F 8
Help. .o 8
1.4 Database Modeler 8
1.5 Matisse ODLo e 8
DefineaNamespace., 8
1.6 Matisse SQL e 9
create NAMEeSPACE.ttt et 9
alternamespace e 9
Arop NAMESPACEttt e 9
setcurrent_namespace. 9
Pseudo Attributes 9
Pseudo Relationships 10
1.7 SchemaManagert 10
mt sdlexport. 11
mt_sdlstubgen 11
1.8 Data Transformation Services 11
mt dtsimport. 12
mt dtsexport. 12
mtdtslink. ... 12
1.9 XML Manager e 13
mt xmlimport 13
parallel import e 14
namespace mapping import L 14
mt xmlexport 14

Contents

1.10

parallel export 15

Namespace eXPOrt.t e 15
Database Utility Commands 15
mt_servercreate 15
JavaBinding 15
Java 7 . 15
GeneratingStub Classes. 16
Object Factory 16
SQLExecution. 17
SchemaNames. i 17
Examples. 17
NETBINAING . .o 17
Generating Stub Classes. 17
ObjectFactory 18
SQLExecution. 18
SchemaNames....... i 18
Examples. 18
C++Binding 18
Generating Stub Classes. 18
ObjectFactory 19
SQLExecution. 19
SchemaNames. i 19
Eiffel Binding 19
64-bit Support 19
Generating Stub Classes. 19
ObjectFactory 19
SQLExecution. 19
SchemaNames. i 20
PHP BINdiNg 20
Generating Stub Classes. 20
ObjectFactory 20
SQLExecution. 20
SchemaNames........ 20
Python Binding 20
Generating Stub Classes. 21
ObjectFactory 21
SQL Execution. 21
SchemaNames...... i 21
Objective-C Binding 21
Generating Stub Classes. 21
Examples. 22
Database Configuration 22
DATIODIRECT ...t e 22
Datafiles. 22
MacOS X .. 22

MATISSE 9.0.8 Release Notes

Compatibility with Previous Releases 23
2.1 Matisse 9.0 Data Migration i 23

S P T o e 23

St 2 . e 23

Step 3 L 23
2.2 ClientConnectionsttt 24
Platform-Specific Topicst 25
31 LINUX .o e 25
3.2 MacOS 25
3.3 S0laris ... 25
3.4 WINdOWS . ..o 25
Update Historyt 26
Resolved in Matisse 9.0.8 26
Resolved in Matisse 9.0.7 e 27
Resolved in Matisse 9.0.6. 27
Resolved in Matisse 9.0.5. 28
Resolved in Matisse 9.0.4 29
Resolved in Matisse 9.0.3 31
Resolved in Matisse 9.0.2. 31
Resolved in Matisse 9.0.1 32
Resolved in Matisse 9.0.0 33
Documentation i 35
Matisse documents availableonthe Web. 35
Documents included with Matisse standard installation 35
Opensource bindings i 35

Contents

Matisse 9.0.8 Release Notes

1 New Features in Matisse 9.0

1.1 Overview

The Matisse 9.0 release introduces new features and major enhancements in the
Matisse product line:

The Matisse Core Model has been extended to support namespaces for schema
objects.

The Matisse Enterprise Manager has been extended to integrate the support
for namespaces.

Matisse Database Modeler has been enhanced to integrate the support for
namespaces.

Matisse tools and utilities (ODL, SQL, XML and DTS) have been extended to
support the management of namespaces.

The Java binding has been upgraded to support Java 7.

The Eiffel binding has been upgraded to support Eiffel 7 for both 32-bit and
64-bit.

All the language bindings (.NET, Java, C++, Python, PHP and Eiffel) have
been extended to integrate the management of database schema object
namespaces.

The maximum capacity of the datafiles handled by the database server has
been extended.

The Matisse DBMS products are available on MacOS X.

The new Objective-C binding has been added to the product line.

1.2 Matisse Core Model

The Matisse Core Model has been extended to support namespaces for schema
objects. This new feature provides developers with more a powerful modeling
capability and a seamless integration with the programming languages supported

by Matisse.

Namespaces Matisse Namespaces are identical in nature to namespaces provided by modern
programming languages. They provide a seamless mechanism to define modules
in large and complex data models.

6 New Features in Matisse 9.0

Matisse 9.0.8 Release Notes

Schema names Schema names follow the naming conventions defined for identifiers or symbols
in the supported programming languages (i.e. MyClass). Schema names can no
longer include all ASCII characters (i.e. "My Class's - [2011/June/18 @
09:15]1").

Array datatypes The Array datatypes (MT aRrAY *) which were not supported by most of the
language bindings are no longer public types. The List datatypes are the datatypes
for implementing Multi-value properties.

1.3 Enterprise Manager Tool

The Matisse Enterprise Manager has been enhanced to improve the database
administrators and developers experience.

Schema Viewer A Namespaces Node is added to the schema and Meta-Schema nodes of an online
database. The Namespaces Node lists all the namespaces in a table and the
hierarchy of namespaces is displayed under the Namespaces Node. Each
Namespace node details the information about the object.

The Schema object nodes under schema and Meta-Schema nodes lists their
respective schema objects in the namespace hierarchy.

Query Editors The Object Browser Editor and SQL Query Analyzer Editor provide a pull-down
menu to select the current namespace into which the query will be executed.

Export Schema The Export ODL and DDL script dialogs provide an option to only export the
database schema objects defined inside a namespace hierarchy.

Import/Export The Import and Export CSV data dialogs provide an option to select a class
Data defined inside a namespace.
Import XML The Import XML data dialog has been redesigned to add an Advanced Options

panel. It also provides an option to remap the data from a source namespace in the
XML file into a destination namespace in the database.

Export XML The Export XML data dialog has been redesigned to add an Advanced Options
panel. It also provides an option to only export the objects from classes defined
inside a namespace hierarchy.

Scheduled The Scheduled Tasks dialog adds the option the option to schedule the recycling
Tasks of the server log file as well as to schedule the execution of a user-defined script
located in scripts/task directory in MATISSE HOME.

New Features in Matisse 9.0 7

Matisse 9.0.8 Release Notes

Audit Log

Log and
Resource files

Manager
License

Graphics and
L&F

Help

The Enterprise Manager Lite now provides access to the log file in the Audit tab
of the Host node.

The log and resource files for Enterprise Manager Lite are specific to this version
and are named respectively mtemgrlite <login name>.log and mtemgrliterc.

The Manage License dialog enables the user to check and update the product
license key.

The Enterprise Manager images have been redesigned providing a better
integration on the supported platforms.

The Tutorial and Online Documentation menu-items in the Help menu have been
added to improve the developer’s experience.

1.4 Database Modeler

Matisse Database Modeler has been extended to support the management of
schema object namespaces.

1.5 Matisse ODL

Define a
Namespace

Matisse Object Definition Language (ODL) has been extended to support the
management of namespaces.

The module keyword in the ODL syntax defines a namespace hierarchy.
module Namespace name {...};

Associated sub-namespaces, classes, indexes and entry-point dictionaries are
declared within the brackets.

For example, defining Person and Company classes in MyCompany . MyApp
namespace and Employee and Manager in sub-namespace HR:

module MyCompany

{
module MyApp

{

interface Person : persistent

{

attribute String<l6> name;
bi
interface Company : persistent

{

attribute String<32> name;

New Features in Matisse 9.0

1.6 Matisse

create
namespace

alter namespace

drop namespace

set
current_namesp
ace

Pseudo
Attributes

Matisse 9.0.8 Release Notes

}s
module HR

{
interface Employee: MyCompany.MyApp.Person: persistent
{
bi
interface Manager: Employee: persistent
{
bi

SQL

Matisse SQL has been extended to support the management of database schema
object namespaces.

To create a namespace in the database, you can use the CREATE NAMESPACE
statement. The following statements create the com.matisse.example namespace
hierarchy:

CREATE NAMESPACE com;
CREATE NAMESPACE com.matisse;
CREATE NAMESPACE com.matisse.example;

To rename an existing namespace, you can use ALTER NAMESPACE RENAME
statement. For example, the following statement modifies the example sub-
namespace name:

ALTER NAMESPACE com.matisse.example RENAME TO examples;

To remove a namespace from the database, you can use the DROP NAMESPACE
statement. The following statement removes the examples sub-namespace:

DROP NAMESPACE com.matisse.examples;

This option sets the default namespace where to find schema objects unless their
names are fully qualified. pEFAULT refers to the root namespace. For example, the

following statement sets the default namespace com.matisse.example.media to
where schema objects can be manipulated without their fully qualified name:

SET CURRENT NAMESPACE com.matisse.example.media;

CREATE CLASS movie (...);
SET CURRENT_NAMESPACE DEFAULT;

MtFullClassName returns the fully qualified class name of an object as string. For
example,

SELECT LastName, MtFullClassName FROM Artist;

New Features in Matisse 9.0

Matisse 9.0.8 Release Notes

Pseudo
Relationships

LastName MtFullClassName

Hanks examples.media.Artist

Foster examples.media.Artist
Spielberg examples.media.MovieDirector

MtFullName returns the fully qualified class name of a schema object as string.
For example:

SELECT MtName, MtFullName FROM MtClass;

MtName MtFullName

Artist examples.media.Artist

Movie examples.media.Movie
MovieDirector examples.media.MovieDirector

Matisse SQL provides several pseudo relationships MtAl1Attributes,
MtAllRelationships, MtAllInverseRelationships, MtAllSuperclasses,
MtAllSubclasses, MtAl1lMethods, MtAllEntryPointDictionaries,
MtAllIndexes defined on MtClass to ease the description of class objects with
inheritance. Each pseudo relationship navigates through the class hierarchy to
aggregate the result produced in each individual level of the hierarchy.

MtAllAttributes returns the aggregation of the MtAttributes relationship value
produced in each individual level of the class hierarchy. For example:

SELECT MtName,MtAttributes.MtName,MtAllAttributes.MtName FROM

MtClass WHERE MtName = 'Manager';
MtName MtName MtName
Manager Expertise EmpId
Manager NULL LastName
Manager NULL Expertise

MtAllRelationships returns the aggregation of the MtRelationships
relationship value produced in each individual level of the class hierarchy. For
example:

SELECT MtName,MtRelationships.MtName, MtAllRelationships.MtName FROM
MtClass WHERE MtName = 'Manager';

MtName MtName MtName

Manager DirectReports Address

Manager ManageProjects Accruals
Manager NULL Department
Manager NULL DirectReports
Manager NULL ManageProjects

1.7 Schema Manager

Matisse Schema Manager has been enhanced to support the management of
database schema object namespaces.

10

New Features in Matisse 9.0

mt_sdl export

mt_sdl stubgen

Matisse 9.0.8 Release Notes

The mt_sdl utility with the export command allows you to export the database
schema in ODL or SQL DDL format. The new -n <namespace> option exports
the database schema defined into the provided namespace.

$ mt_sdl export -h

MATISSE Schema Definition Language x64 Version 9.0.0.0 (64-bit
Edition) - Jan 30 2012.

(c) Copyright 1992-2012 Matisse Software Inc. All rights reserved.

Usage:
mt sdl [OPTIONS] export {-odl | -ddl} <schema file> [-n <namespace>]
[-h]
-odl Generate the ODL class definitions from a database schema.
-ddl Generate the SQL DDL script from a database schema.
-n Export only the schema objects under the provided namespace
-h Display this help and exit.

The mt_sdl utility with the stubgen command allows you to generate source
code from the database schema classes defined in the ODL file. The new -sn

<namespace> and -1n <namespace> options define the mapping between the
schema class namespace and the language class namespace.

1$ mt sdl stubgen -h

MATISSE Schema Definition Language x64 Version 9.0.0.0 (64-bit
Edition) - Jan 30 2012.

(c) Copyright 1992-2012 Matisse Software Inc. All rights reserved.

Usage:

mt sdl stubgen {-lang cxx [-sn <namespace>] [-ln <namespace>] | -
lang java [-sn <namespace>] [-1ln <package>] | -lang php [-sn
<namespace>] [-1ln <namespace>] | -lang python [-sn <namespace>]
-lang eiffel [-sn <namespace>] } <ODL file> [-h]
-lang cxx Create C++ files from the ODL class definitions.
-lang java Create Java files from the ODL class definitions.
-lang php Create PHP files from the ODL class definitions.

-lang python Create Python files from the ODL class definitions.
-lang eiffel Create Eiffel files from the ODL class definitions.

-sn Specify the schema class namespace that is mapped to a
language class namespace if any and if language supports
namespaces.
-1n Specify the language class namespace for the generated
proxi

classes. when the -sn and -1n options are omitted, eac

h

class is generated in a namespace matching the schema

class namespace.
-psm Generate methods mapping SQL method calls.
-h Display this help and exit.

1.8 Data Transformation Services

Matisse Data Transformation Services utility (mt_dts) has been updated to be
consistent with other data management command line. The import, export and
link commands require the -£ option to specify the csv or xrbD file.

New Features in Matisse 9.0

11

Matisse 9.0.8 Release Notes

mt_dts import The mt_dts utility with the import command allows you to load data in a csv
format into the database server.The - £ option is required to specify the csv file.
The class name must be the fully qualified name if the class is defined in a
namespace.

$ mt_dts import -h

MATISSE Data Transformation Services x64 Version 9.0.0.0 (64-bit
Edition) - Jan 30 2012.

(c) Copyright 1992-2012 Matisse Software Inc. All rights reserved.

Usage:

mt_dts [OPTIONS] import -f <CSV file> [-c <class name>] [-update] [-
noname] [-media File|Column]
-f Specify the CSV file to be loaded.
-c Specify the class name where the data will be loaded if
different

from the CSV filename.
-update When specified with the first columns of the CVS file
composing

the primary key, values of existing objects are updated.
-noname When specified there is no field name on the first row in
the

CVsS file.
-media When specified with 'File', the media data is in an
external file.

With 'Column' the media data is in the CVS file.

mt_dts export The mt_dts utility with the export command allows you to extract data in a csv
format from the database server.The - £ option is required to specify the csv file.
The class name must be the fully qualified name if the class is defined in a
namespace.

$ mt_dts export -h

MATISSE Data Transformation Services x64 Version 9.0.0.0 (64-bit
Edition) - Jan 30 2012.

(c) Copyright 1992-2012 Matisse Software Inc. All rights reserved.

Usage:
mt dts [OPTIONS] export -f <CSV file> [-sqgl "<SQL select>" | -c
<class name>] [-noname] [-media File|Column]
-f Specify the CSV file to be generated.
-sql Specify the SQL select statement which filters data to be
exported.
-C Specify the class containing the data to be exported.
-noname When specified there is no field name on the first row in
the
Cvs file.
-media When specified with 'File', the media data is exported
into an
external file. With 'Column' the media data is exported into
the CVS file.

mt_dts link The mt_dts utility with the 1ink command allows you to extract data in a xrD
format from the database server.The - £ option is required to specify the xrp file.

$ mt _dts link -h

12 New Features in Matisse 9.0

Matisse 9.0.8 Release Notes

MATISSE Data Transformation Services x64 Version 9.0.0.0 (64-bit
Edition) - Jan 30 2012.
(c) Copyright 1992-2012 Matisse Software Inc. All rights reserved.

Usage:
mt dts [OPTIONS] link -f <XRD file>
-f Specify the XML Relationship Descriptors file describing how to
establish relationship between entities.

1.9 XML Manager

mt_xml import

Matisse XML Manager utility (mt xm1) has been extended to load in parallel
XML documents produced with the export parallel option. The XML utility has
also been enhanced to support the management of schema object namespaces.

The mt xm1 utility with the import command provides the -parallel <n> option
to load in parallel XML documents. It also provides the -£n and -dn options to
remap the data from a source namespace in the XML file into a destination
namespace in the database.

$ mt_xml import -h

MATISSE XML Manager x64 Version 9.0.4.0 (64-bit Edition) - Sep 13
2012.

(c) Copyright 1992-2012 Matisse Software Inc. All rights reserved.

Usage:
mt xml [OPTIONS] import {-f <xmlfile> | -in} [-fn <nsname>] [-dn
<nsname>] [-parallel <n>] [-parse <n>] [-update] [-commit <n> | -
scommit]
-f Specify the XML data file to be loaded into the database.
-in Read the XML data from standard input and import it into
the database.
-fn Specify the namespace from which the objects are
imported.
-dn Specify the namespace into which the objects are
imported.

When the -fn and -dn options are ommitted, each object is
imported in a namespace matching the schema class
namespace.
-parallel TImport data with <n> tasks running in parallel. The XML

data is

imported from a multi-segment XML file. The number of
tasks is

limited by the number of XML file segments.
-parse Specify the number of objects to be parsed in one data
sequence.

The default value is 256. The values range between 1 and
512.
-update When specified with MtPrimaryKey attribute, values of
existing

objects are updated.
—commit Commit transaction for every <n> objects created. (by
default

commit occurs every 20480 objects created)

New Features in Matisse 9.0 13

Matisse 9.0.8 Release Notes

-scommit Forces to import the XML document in a single
transaction

(require enough memory to parse the XML document and to
create

all the objects in memory)

parallel import The following example imports the XML documents in the database with 6 tasks
running in parallel:

$ mt xml -d example import -f outp6/exampleP6.xml -parallel 6

namespace The following example imports the XML document in the database remapping the
mapping import projl.appl namespace into the database app.clientl namespace:

$ mt_xml -d example import -f example.xml -fn projl.appl -dn
app.clientl

mt_xml export The mt_xm1 utility with the export command provides the -n option to only
export the objects from classes defined inside a namespace hierarchy.

]$ mt_xml export -h

MATISSE XML Manager x64 Version 9.0.4.0 (64-bit Edition) - Sep 13
2012.

(c) Copyright 1992-2012 Matisse Software Inc. All rights reserved.

Usage:
mt xml [OPTIONS] export {-f <xmlfile> [-s <size>[M|G]] | -out} [-

emedia] [-foid] [-parallel <n>] [-prefetch <n>] [-n <nsname>] {-
full | -sgl <stmt> | -oid <oid> ...}
-f Specify the XML data file storing XML data extracted from
the

database.
-s Specify the XML data file max size therefore splitting
XML data

into multiple XML files named <xmlfile> xds <docid>.xml.
-out Write XML data to the standard output.
-emedia Export media data in the XML document instead of
exporting

media data into external files.
-foid Export data in a format with OIDs in the xml tags to
enable

Primary Key recovery. (The -full option always exports
in this

format)
-task Export data with <n> tasks running in parallel. The XML
data is

exported into multiple XML files named
<xmlfile> xds <docid>.xml.
-parallel Export data with <n> tasks running in parallel. The XML
data is

exported into multiple XML files named
<xmlfile> xds_a<docid>.xml

and <xmlfile> xds r<docid>.xml. This is the XML format
to import

a multi-segment XML file in parallel.

14 New Features in Matisse 9.0

parallel export

namespace
export

Matisse 9.0.8 Release Notes

-prefetch Specify the number of objects to be prefetched when
exporting
data. The default value is 128. The values range between

1 and

128.
-full Export all non-schema data into one or multiple XML
files.
-sqgl Specify the SQL SELECT statement retrieving the objects
to be

exported.
-oid Specify the list of object OIDs to be exported. Both
decimal

and hexadecimal oid formats are accepted.
-n Specify the namespace from which the objects are exported.

The following example exports the database with 12 tasks running in parallel into
the multiple XML documents of 1gigabytes each:

$ mt_xml -d example export -f out/examplePl2.xml -parallel 12 -s 1G -
full

The following example exports in a XML document all the objects from the
classes defined in the app.client1 namespace:

$ mt _xml -d example export -f example.xml -n app.clientl -full

1.10 Database Utility Commands

mt_server
create

The mt_server create command allows you to create the configuration file for a
new database.

$ mt_server create -h

Usage: mt_ server [OPTIONS] create [-p <size>[K]] [-c <size>[GM]] [-s]
[-m] [-r] [-f <size>[GM]] [-h]
-p, —--pagesiz Server page size (in Kbytes)
-c, —--cachesiz Initial memory cache size (default in Mbytes)
-s, —--security Access control enabled
-m, —--memory In-memory database enabled
-r, —--mirror Mirrored datafile
-f, --filesiz Initial datafile capacity (default in Mbytes)
-h, --help Display this help and exit

1.11 Java Binding

Java 7

The Java binding has been upgraded to support Java 7 and extended to support
the management of database schema object namespaces.

Matisse Java binding has been upgraded to support Java 7.

New Features in Matisse 9.0 15

Matisse 9.0.8 Release Notes

Generating Stub
Classes

Object Factory

The mt_sd1 utility with the stubgen command allows you to generate Java
source code from the database schema classes defined in the ODL file. The new -
sn <namespace> and -1n <namespace> options define the mapping between the
schema class namespace and the language class namespace.

For example, to generate the Java classes in the root package from the database
schema classes defined in the java examples.chap 3 namespace.

mt sdl stubgen -lang java -sn java_ examples.chap 3 examples.odl

To generate the Java classes in the com. corp.myapp package from the database
schema classes defined in the root namespace.

mt sdl stubgen -lang java -1ln com.corp.myapp example.odl

To generate the Java classes in the com. corp.myapp package from the database
schema classes defined in the Examples.Sample03 namespace.

mt sdl stubgen -lang java -sn Examples.Sample(03 -1ln com.corp.myapp
example.odl

To generate the Java classes in the com. corp.myapp package from the database
schema classes defined in the com. corp.myapp namespace.

mt sdl stubgen -lang java example.odl

To generate the Java classes in the root package from the database schema classes
defined in the root namespace.

mt sdl stubgen -lang java example.odl

The object factory classes handle the namespace mapping between the Java
classes and the schema classes. The getbDatabaseClass () method was added to
the MtobjectFactory interface to handle the bidirectional namespace mapping.

The MtPackageObjectFactory class constructor takes the Java package and the
Schema Namespace as additional argument.

// The third argument is given so that the connection object can find

// the mapping between the Java class Person, which is defined in the

// "com.mycomp.myapp" package and the schema class Person defined in

// the "examples.java examples.chap 3" namespace.

MtDatabase db = new MtDatabase (hostname, dbname, new
MtPackageObjectFactory ("com.mycomp.myapp", "examples.java exampl
es.chap 3"));

As an alternative you can use the MtExplicitObjectFactory class with the
generated examplesSchemaMap. txt file that defines a direct class mapping
between the Java classes and the database schema classes.

MtDatabase db = new MtDatabase (hostname, dbname, new
MtExplicitObjectFactory ("examplesSchemaMap.txt"));

16

New Features in Matisse 9.0

Matisse 9.0.8 Release Notes

SQL Execution The new setSglCurrentNamespace () method defined on the MtDatabase class
sets the SQL CURRENT NAMESPACE. The getsglCurrentNamespace () returns the
CURRENT NAMESPACE value.

MtDatabase db = new MtDatabase (hostname, dbname) ;
db.startVersionAccess () ;

// Set the SQL CURRENT NAMESPACE to 'examples.java examples.jdbc'
db.setSglCurrentNamespace ("examples.java examples.jdbc");

Schema Names The new getMtFullName () method defined on the MtClass, Mt Index,
MtEntryPointDictionary classes returns the fully qualified name for the
schema object.

Examples Matisse Java binding examples have been updated to define the database schema
in a specific namespace.

1.12 .NET Binding

The .NET binding has been extended to support the management of database
schema object namespaces.

Generating Stub The mt_dnom utility with the stubgen command allows you to generate NET

Classes source code from the database schema classes defined in the database. The new -
sn <namespace> and -1n <namespace> options define the mapping between the
schema class namespace and the language class namespace.

For example, to generate the .NET classes in the root namespace from the schema
classes defined in the examples.chap 3 namespace.

mt_dnom -d example stubgen -lang C# -sn examples.chap 3

To generate the .NET classes in the corp.Myapp package from the schema classes
defined in the root namespace.

mt_dnom -d example stubgen -lang C# -1n Corp.Myapp

To generate the .NET classes in the corp.Myapp package from the schema classes
defined in the Examples.Sample03 namespace.

mt dnom -d example stubgen -lang C# -sn Examples.Sample03 -1n
Corp.Myapp

To generate the .NET classes in the Corp.Myapp namespace from the schema
classes defined in the corp.Myapp namespace.

mt_dnom -d example stubgen -lang C#

To generate the .NET classes in the root namespace from the schema classes
defined in the root namespace.

mt dnom -d example stubgen -lang C#

New Features in Matisse 9.0 17

Matisse 9.0.8 Release Notes

Object Factory

SQL Execution

Schema Names

Examples

The object factory classes handle the namespace mapping between the .NET
classes and the schema classes. The getbatabaseClass () method was added to
MtObjectFactory interface to handle the bidirectional namespace mapping.

The MtPackageObjectFactory class constructor takes the .NET namespace and
the Schema namespace.

The new sqglcurrentNamespace property defined on the MtDatabase class sets
the SQL cURRENT NaMESPACE and returns the CURRENT NAMESPACE value.

The new MtFullName property defined on the MtClass, Mt Index,
MtEntryPointDictionary classes returns the fully qualified name for the
schema object.

Matisse .NET binding examples have been updated to define the database
schema in a specific namespace.

1.13 C++ Binding

Generating Stub
Classes

The C++ binding has been extended to support the management of database
schema object namespaces.

The mt_sd1 utility with the stubgen command allows you to generate C++
source code from the database schema classes defined in the ODL file. The new -
sn <namespace> and -1n <namespace> options define the mapping between the
schema class namespace and the language class namespace.

For example, to generate the C++ classes in the root namespace from the schema
classes defined in the cxx examples.chap 3 namespace.

mt sdl stubgen -lang cxx -sn cxx examples.chap 3 examples.odl

To generate the C++ classes in the corp.myapp namespace from the schema
classes defined in the Examples.Sample03 namespace.

mt sdl stubgen -lang cxx -sn Examples.Sample03 -1ln corp.myapp
example.odl

To generate the C++ classes in the corp.myapp namespace from the schema
classes defined in the corp.myapp namespace.

mt sdl stubgen -lang java example.odl

To generate the C++ classes in the root namespace from the schema classes
defined in the root namespace.

mt sdl stubgen -lang java example.odl

18

New Features in Matisse 9.0

Object Factory

SQL Execution

Schema Names

Matisse 9.0.8 Release Notes

The object factory classes handle the namespace mapping between the C++
classes and the schema classes. The getDatabaseClass () method was added to
the MtobjectFactory interface to handle the bidirectional namespace mapping.

The MtDynamicObjectFactory class constructor takes the C++ namespace and
the database schema namespace.

The new setSqglCurrentNamespace () method defined on the Mtpatabase class
sets the SQL CURRENT NAMESPACE. The getsglCurrentNamespace () returns the
CURRENT NAMESPACE value.

The new getMtFullName () method defined on the MtCclass, MtIndex,
MtEntryPointDictionary classes returns the fully qualified name for the
schema object.

1.14 Eiffel Binding

64-bit Support

Generating Stub
Classes

Object Factory

SQL Execution

The Eiffel binding has been extended to support the management of database
schema object namespaces.

Matisse Eiffel binding has been updated to support 64-bit eiffel application.

The mt_sd1 utility with the stubgen command allows you to generate Eiffel
source code from the database schema classes defined in the ODL file. The new -
sn <namespace> option define the mapping between the schema class namespace
and the language class.

For example, to generate the Eiffel classes from the schema classes defined in the
eif examples.chap 3 namespace.

mt sdl stubgen -lang eiffel -sn eif examples.chap 3 examples.odl

To generate the Eiffel classes from the schema classes defined in the root
namespace.

mt sdl stubgen -lang eiffel example.odl

The object factory classes handle the namespace mapping between the Eiffel
classes and the schema classes. The get database class() method was added
to the MT OBJECT FACTORY virtual class to handle the bidirectional namespace

mapping.

The new set sql current namespace () method defined on the MT DATARASE
class sets the SQL CURRENT NAMESPACE. The get sql current namespace ()
returns the CURRENT NAMESPACE value.

New Features in Matisse 9.0

19

Matisse 9.0.8 Release Notes

Schema Names

The new mtfullname () method defined on the MTCLASS, MTINDEX,
MTENTRYPOINTDICTIONARY classes returns the fully qualified name for the
schema object.

1.15 PHP Binding

Generating Stub
Classes

Object Factory

SQL Execution

Schema Names

1.16 Python

The PHP binding has been extended to support the management of database
schema object namespaces.

The mt_sdl utility with the stubgen command allows you to generate PHP
source code from the database schema classes defined in the ODL file. The new -
sn <namespace> and -1n <namespace> options define the mapping between the
schema class namespace and the language class namespace.

For example, to generate the PHP classes in the root namespace from the schema
classes defined in the php examples.chap 3 namespace.

mt sdl stubgen -lang php -sn php examples.chap 3 examples.odl

To generate the PHP classes in the root namespace from the schema classes
defined in the root namespace.

mt sdl stubgen -lang php example.odl

The object factory classes handle the namespace mapping between the PHP
classes and the schema classes. The getbatabaseClass () method was added to
the MtobjectFactory interface to handle the bidirectional namespace mapping.
The MtDynamicObjectFactory class constructor takes the PHP namespace and
the database schema namespace.

The new setSqglCurrentNamespace () method defined on the MtDatabase class
sets the SQL cURRENT NAMESPACE. The getSglCurrentNamespace () returns the
CURRENT NAMESPACE value.

The new getMtFullName () method defined on the Mtclass, MtIndex,
MtEntryPointDictionary classes returns the fully qualified name for the
schema object.

Binding

The Python binding has been extended to support the management of database
schema object namespaces.

20

New Features in Matisse 9.0

Generating Stub
Classes

Object Factory

SQL Execution

Schema Names

Matisse 9.0.8 Release Notes

The mt_sdl utility with the stubgen command allows you to generate Python
source code from the database schema classes defined in the ODL file. The new -
sn <namespace> option define the mapping between the schema class namespace
and the language class.

For example, to generate the Python classes from the schema classes defined in
the py examples.chap 3 namespace.

mt sdl stubgen -lang python -sn py examples.chap 3 examples.odl

To generate the Python classes from the schema classes defined in the root
namespace.

mt sdl stubgen -lang python example.odl

The object factory classes handle the namespace mapping between the Python
classes and the schema classes. The getbatabaseClass () method was added to
the MtobjectFactory interface to handle the bidirectional namespace mapping.
The MtDynamicObjectFactory class constructor can take one argument that is
the Schema Namespace.

The new setSqglCurrentNamespace () method defined on the Mtpatabase class
sets the SQL CURRENT NAMESPACE. The getsglCurrentNamespace () returns the
CURRENT NAMESPACE value.

The new getMtFullName () method defined on the MtCclass, MtIndex,
MtEntryPointDictionary classes returns the fully qualified name for the
schema object.

1.17 Objective-C Binding

Generating Stub
Classes

The new Objective-C binding has been added to the MacOS X product line. The
Objective-C binding is open source. It is comprised of 2 main files
matisseObjC.h and matisseObjc.m. This binding complies with the design
pattern used in the other Matisse Language bindings while respecting the
programming guide line recommended for Objective-C.

The mt sd1 utility with the stubgen command allows you to generate Objective-
C source code from the database schema classes defined in the ODL file. The -sn
<namespace> options define the mapping between the schema class namespace
and the language class.

For example, to generate Objective-C classes from the schema classes defined in
the cxx_examples.chap 3 namespace.

mt sdl stubgen -lang objC -sn cxx examples.chap 3 examples.odl

To generate the Objective-C classes from the schema classes defined in the root
namespace.

New Features in Matisse 9.0

21

Matisse 9.0.8 Release Notes

Examples

mt sdl stubgen -lang objC example.odl

Matisse Objective-C binding examples are available in a standalone package.

1.18 Database Configuration

DATIODIRECT

Datafiles

A new optional database configuration parameter has been added to minimize the
file system cache effects of the write and read operations to and from the data file.
The capacity of a datafile as well as their number managed by a Matisse server
has been modified to better utilize the storage hardware.

This parameter defines the I/O mechanism for data files on the file system. When
set to 1, it minimizes the file system cache effects of the 1/O to and from the data
file. This parameter has no effect on systems that do not support this OS feature.

The database server can manage up to 31 primary datafiles on individual disks or
RAID-enabled disks and up to 31 mirrored datafiles. The datafile maximum
capacity has been extended to 512 Gigabytes with a standard page size of 8
Kilobytes and therefore the maximum database size of roughly 16 Terabytes.
Multi-media databases with page size of 32 Kilobytes have a maximum database
size of roughly 64 Terabytes.

1.19 MacOS X

The Matisse DBMS 32-bit and 64-bit as well as Matisse Lite products are
available on MacOS X.

1.20 License Key Format

The customer license key format has changed in release 9.0. Matisse 9.0 does not
recognize license keys issued for prior releases. Upon installation of Matisse 9.0, a
license key with limited features is automatically issued.

22

New Features in Matisse 9.0

Matisse 9.0.8 Release Notes

2 Compatibility with Previous Releases

2.1 Matisse 9.0 Data Migration

Step 1

Step 2

Step 3

Matisse Server 9.0 comes with several changes in the data format. You must use
the mt_xm1 tool to convert an existing database (8.4.x or prior) into the 9.0 format.

Before installing 9.0.x, check if your data and your application are compatible
with Matisse 9.0 since the array datatypes are no longer public. Most likely you
are already using the list datatypes since the vast majority of the Matisse language
bindings do not support Matisse array datatypes. To double-check, run the
following SQL statement, which does not return any row if your application is
compatible.

mt sgl -d <dbname>
SQL>SELECT
MtBasicType,
MtAttributeTypeOf.MtName AS AttributeName,
MtAttributeTypeOf .MtAttributeOf.MtName AS ClassName
FROM MtType
WHERE MtBasicType = 16 OR
MtBasicType = 20 OR
MtBasicType = 24 OR
MtBasicType = 40 OR
MtBasicType = 44 OR
MtBasicType = 48;

However if the query returns one or more rows, you need to migrate your data and
upgrade your application. Replace the Array data type with the corresponding List
data type.

Before installing 9.0.x, save your schema in ODL and your data in XML format:

mt sdl -d <dbname> export -odl schema.odl

mt xml -d <dbname> export -f data.xml -full

You may check the Matisse XML Programming Guide for more options to
export in XML format.

You may now install Matisse 9.0.x on your machine and then restore the schema
and the data as follows:

mt sdl -d <dbname> import -odl schema.odl

mt xml -d <dbname> import -f data.xml

Compatibility with Previous Releases 23

Matisse 9.0.8 Release Notes

2.2 Client Connections

Only 9.0.x clients may be used with 9.0.x servers.

The clients for earlier releases of Matisse are incompatible with the 9.0.x server.
Consequently, you must upgrade any older clients to 9.0.x before attempting to
access a 9.0.x server.

24 Compatibility with Previous Releases

Matisse 9.0.8 Release Notes

3 Platform-Specific Topics

3.1 Linux

The most popular Linux distributions on x86 (32-bit) and x86_64 (64-bit) chip
families are supported. Any Linux distribution, where Matisse DBMS has not
been tested, require Linux kernel 2.6.18 on systems based on x86 (32-bit) or
x86_64 (64-bit) chip families.

3.2 MacOS

Support for MacOS X version for Intel (10.5 Leopard or higher).

3.3 Solaris

Support for Solaris 10 on x86 (32-bit) and x86 64 (64-bit) chip families.

The Solaris 10 on SPARC with 32-bit kernel and 64-bit kernel is available upon
request.

3.4 Windows

Support for Windows (XP/2003/2008/2012/Vista/7/8) on systems based on x86
(32-bit) and x86_64 (64-bit) chip families.

Platform-Specific Topics 25

Matisse 9.0.8 Release Notes

4 Update History

This section contains the list of bug fixes and minor feature changes between releases. You may refer to it
before upgrading to see if the new release resolves a known problem or adds a needed feature.

Resolved in Matisse 9.0.8

The log files for the Port Monitor, Server Manager, SMListener and Enterprise Manager programs
now report the edition of the running program (32-bit or 64-bit).

In the C API, the MT VERSION NAME PREFIX MAX LEN constant was extended to 23 characters from
20 characters to support snapshot name up to 31 characters.

On Windows, updating the product license key in the Enterprise Manager may stop the Matisse
Server Manager running as a Windows service.

Creating a schema object of type Mtobject, Mt Type, MtMethod OF MtMetaClass While not being
connected to the database in MT DATA DEFINITION mode fails to report the correct error message.

In the C API function MtCtxSetListElements replacing a MT LIST value with a MT TEXT value or
vise versa may fail to report the expected error message.

In some cases SQL Version Travel queries fail to return the correct count of objects for the count (*)
built-in function.

SELECT count (*) FROM DELETED (Document, BEFORE DAY03 0000000C)

SELECT count (*) FROM UPDATED (Document, AFTER DAYO1l 0000000A)

SELECT count (*) FROM INSERTED (Document, AFTER DAYO1l 0000000A)

In some cases SQL Version Travel queries fail to return objects which have only updated a few
objects in large relationships.

In some cases loading in parallel with at least 8 tasks an entire database from XML files containing a
majority of objects with attributes containing large LIST values may fail.

In some cases, loading an entire database from an XML file may turn the index key uniqueness check
off until the database is stopped and restarted.

On Linux, a database with bATIODIRECT configuration parameter enabled may fail to report a specific
enough error message in case the file system settings prevent from using of the operating system call
associated with this database configuration parameter.

The mt_server init command with the --wait option takes at least 10 seconds to return whatever
the database configuration.

On Windows the mt_server list --stopped command may fail when the number of databases to
be listed become very large.

26

Update History

Matisse 9.0.8 Release Notes
Resolved in Matisse 9.0.7

* In the Enterprise Manager, the Monitor as well as the Datafiles panels provide information about the
high watermark reached for each datafile. When a version collection is running, the datafile status
now includes collection level and scanning progress.

* Themt server monitor command with the -w (--wide) option now provides information about the
high watermark reached for each datafile. When a version collection is running, the datafile status
now includes collection level and scanning progress.

e Themt file 1ist command with the -w (--wide) option now provides information about the high
watermark reached for each datafile. When a version collection is running, the datafile status now
includes collection level and scanning progress.

* In the Java binding, the MtDatabase.getObjectFactory () method which returns the object factory
associated to a connection has been added:
MtObjectFactory MtDatabase.getObjectFactory ()

e In the Java binding, the tostring () methods defined on MtCoreObjectFactory,
MtExplicitObjectFactory, and MtPackageObjectFactory (MtObjectFactory class
implementations) return details about the mapping between the database schema classes and their
Java class implementations.

String MtPackageObjectFactory.toString ()
String MtExplicitObjectFactory.toString/()
String MtCoreObjectFactory.toString()

* In the java binding in some cases, an object read from the database fails to load the corresponding
Java class leading to the error:
java.lang.ClassCastException: com.matisse.reflect.MtObject cannot be cast to

com.examples.myclass.

* A new optional database configuration parameter (DATIODIRECT) has been added to minimize the file
system cache effects of the write and read operations to and from the data file.

* In some cases, the automatic version collection does not clear up the entries from the Object Table
while it should.

* On Linux, the execution of the mt databases.sh script reports a syntax error during the machine
boot unless the start () and stop () functions have been properly updated to manage databases.

Resolved in Matisse 9.0.6

* Inthe C++ binding, the MtDatabase: :getConnectionId () method which returns the connection-id
has been added:

int MtDatabase::getConnectionId() const

* Themt file utility now allows to change the AUTOEXTEND and DATEXTENDSIZ configuration
parameter values on an online database.
Usage: mt file [OPTIONS] autoextend {-e|-d}
-e, —-—-enable Fnable autoextend (default)

-d, --disable Disable autoextend

Update History 27

Matisse 9.0.8 Release Notes

-h, --help Display this help and exit

Usage: mt file [OPTIONS] setextendsiz -s <size>
-3, --size=... Minimum file extension size in Mega bytes

-h, --help Display this help and exit

The new -w (--wide) option has been added to mt transaction 1list command to display more
information about active transactions.

The mt transaction 1ist command truncates the hostname and username at 16 characters.

In the Objective C binding, the [MtDatabase connectionId] method does not return the correct
connection-id when the application is linked to the Matisse Lite library.

In very rare cases, the server version collection operation may fail to complete with the error:
GOM-F-VCTASKEXCEP, Exception in VC task for file 2 at page 1099122927, This may also
lead to a substantial increase of the database size.

On un1x installations, the MATISSE cPP environment variable defined in mt env.sh and mt_env.csh
is now commented out.

Resolved in Matisse 9.0.5

In the Enterprise Manager, the Scheduled Tasks dialog adds the option to schedule the recycling of
the server log file.

In the Enterprise Manager, the Scheduled Tasks dialog adds the option to schedule the execution of a
user-defined script located in scripts/task directory in MATISSE _HOME. The database name is the
script only parameter.

The mt_server recyclelog command line receives 2 new options -s and -b to recycle respectively
the server log file and the backup journal log file.

In SQL, the compilation of a block statement which includes a SELECTION construct in a RETURN
statement fails with a syntax error.
BEGIN
DECLARE emp sel SELECTION (Employee) ;
DECLARE mgr sel SELECTION (Manager);
RETURN SELECTION (emp sel UNION mgr sel);
END;

In SQL, the compilation of a block statement which includes a seL.EcTTION construct with only one
object does not produce the correct instruction.
BEGIN
DECLARE res SELECTION (Employee) ;
DECLARE obj Employee;
SET res = SELECTION (obj) ;
RETURN res;
END;

28

Update History

Matisse 9.0.8 Release Notes

e In SQL, the compilation of a sELECT statement calling a static method of a class defined in a
namespace fail to compile with the MATTISSE NOSUCHCLASS error.
SELECT
e.EmpId,
e.GetAccrualsQuantity (tutorials.reports.Bank: :ListBankName (FALSE)) AS Total
FROM

tutorials.reports.Employee e

* In some cases, the SQL compiler does not select the best index when the wHERE clause includes an or
condition as well as when classes in the navigation path matches with multiple indexes.

» Ins some cases, the execution of sELECT statement in which the select clause refers directly to a
Pseudo-relationship fails with the MATISSE OBJECTNOTFOUND error
SELECT MtMame,MtAllIndexes FROM MtClass

* In the Enterprise Manager, deleting an active task in the Scheduled Tasks dialog fails to stop the task.

» In some cases, the execution of an incremental backup in a scheduled task actually executes a full
backup since it fails to recognize that there is no increment to backup.

e Themt file 1ist command reports by default the datafile information in Mbytes from previously
in Kbytes.

* The long option --mirror for the mt file add command is inactive while the short option -m adds a
mirrored datafile.

* The MaAXBKPLOGFILES configuration parameter does not properly limit the number of backup journal
log file preserved.

Resolved in Matisse 9.0.4

e In the Enterprise Manager, the Import XML dialog and Export XML dialog have been redesigned to
add an Advanced Options panel.

e In the Enterprise Manager, the Create Database dialog manages in the Server panel the following
configuration parameters:
AUTOCOLLECTFREQ
OBJTABLESIZ
OBJTABCLRFREQ

* In the Enterprise Manager, A Checkpoint database menu item has been added to the main menu
under Tasks for in-memory databases. In addition a pop-up menu was added to the Management node
of an online database to modify server parameters. The menu items include collect object
versions, Change auto-collect mode, Extend page cache, Extend object table cache, Set
auto-collect run frequency, Set clear object table run frequency, and Change

transaction mode.

* New SQL pseudo-relationships have been defined on Mtclass to improve class description of classes
with inheritance:
MtClass.MtAllIndexes
MtClass.MtAllEntryPointDictionaries

Update History 29

Matisse 9.0.8 Release Notes

New C API functions have been added to improve class description of classes with inheritance:
MtSTS MtCtxMGetAllIndexes (MtContext ctx, MtSize* numHandles, MtOid** indexes,

MT CONST MtChar* className) ;

MESTS MtCtx MGetAllIndexes (MtContext ctx, MtSize* numHandles, MtOid** indexes,
MtOid classe);

MtSTS MtCtxGetAllIndexes (MtContext ctx, MtSize* numHandles, MtOid* indexes,

MT CONST MtChar* className) ;

MESTS MtCtx GetAllIndexes (MtContext ctx, MtSize* numHandles, MtOid* indexes, MtOid
classe) ;

MtSTS MtCtxMGetAllEntryPointDictionaries (MtContext ctx, MtSize* numDicts, MtOid**
dictionaries, MT CONST MtChar* className);

MESTS MtCtx MGetAllEntryPointDictionaries (MtContext ctx, MtSize* numDicts, MtOid**
dictionaries, MtOid aClass);

MtSTS MtCtxGetAllEntryPointDictionaries (MtContext ctx, MtSize* numDicts, MtOid*
dictionaries, MT_CONST MtChar* className) ;

MtSTS MtCtx GetAllEntryPointDictionaries (MtContext ctx, MtSize* numDicts, MtOid*

dictionaries, MtOid aClass):;

In the Enterprise Manager, in some cases stopping a large in-memory database may block all other
operations until the database is offline.

In some cases, forcing to stop a database during a restore operation may fail to indicate that the
backup has not been fully restored.

In some rare cases, adding thousands of entries at once into a large text index may fail.

In some rare cases, adding thousands of objects into a relationship one at a time to over 60,000
objects modified into a single transaction may fail.

In some cases, a SQL DELETE in a block statement may fail with MATISSE-E-STMT TOO COMPLEX,
MATISSE SQL statement too complex; too many statements in a block when the class has a
very large number of sub-classes.

In some cases, a SQL INSERT, UPDATE Or DELETE in a block statement may produce unnecessary index
maintenance instructions.

The mt server extendcache command does not always return the expected error message when the
new requested cache size goes beyond the memory available on the machine.

The mt_backup start —-incremental command now returns the MTs NOINCBACKUP error instead of
having to run mt_backup write to receive the same error.

The mt_backup end command includes a new --cancel (-c) option to force the cancellation of the
active backup.

The mt_backup end command may record in the backup journal log file (.bj1) an explicit Backup
cancelled record to indicate that all the saved files prior to the last completed backup are to be
ignored.

In some cases, the database server may fail to create large datafiles (> 8Gbytes) for an in-memory
database.

30

Update History

Matisse 9.0.8 Release Notes

Resolved in Matisse 9.0.3

The Matisse products are now supported on Windows 8 and Windows Server 2012.
The Matisse products are now supported on Mac OS X 10.8 Mountain Lion.

The Matisse products on Mac OS X are fully compatible with the latest version of native LLVM
compiler.

The Objective-C binding for MacOS X works with ARC (Automatic Reference Counting).

The mt_xml utility with the import command provides the -parallel <n> option to load in parallel
XML documents.

The new mt_datafile administration command has been added to provide information about offline
datafiles.

In the Java binding, the URL protocol for the JDBC driver class respects the following format:

jdbc:matisse://hostname[:port]/dbname

The ‘MATISSE-E-INVALTYPE, 72 is not a valid Matisse type’ error message returned when
the argument of a built-in function is invalid has been improved.
SELECT min (oid), max (MemberId) FROM MemberProfile;

In some cases, loading all the objects with MtCtxLoadNumObjects in the Access-For-Update mode
may not prevent a deadlock when it is expected.

The mt_dts help provides an inaccurate description of the possible commands.

In some cases, the multi-segment XML files produced by a XML export command does not respect
the <filename> xds <documentid>.xml format.

Resolved in Matisse 9.0.2

The new Objective-C binding has been added to the MacOS X packages.

New C API functions have been added to support schema object namespaces

MtSTS MtCtxMGetAllSubnamespaces (MtContext ctx, MtSize* numSubnamespaces, MtOid**
subnamespaces, MT CONST MtChar* namespaceName) ;

MESTS MtCtx MGetAllSubnamespaces (MtContext ctx, MtSize* numSubnamespaces, MtOid**
subnamespaces, MtOid aNamespace) ;

MtSTS MtCtxGetAllSubnamespaces (MtContext ctx, MtSize* numSubnamespaces, MtOid*
subnamespaces, MT CONST MtChar* namespaceName) ;

MtSTS MtCtx GetAllSubnamespaces (MtContext ctx, MtSize* numSubnamespaces, MtOid*

subnamespaces, MtOid aNamespace) ;

A new SQL pseudo-relationship has been defined on MtNamespace to improve description of
namespace hierarchy.

MtNamespace.MtAllSubnamespaces

In the Enterprise Manager, the status bar message does not display the exact number of databases
when a Host node is selected.

Update History 31

Matisse 9.0.8 Release Notes

In the Enterprise Manager Object Browser Panel, the Statistics tab is not always properly refreshed
when switching databases back and forth.

In the Enterprise Manager, restoring a backup into a database where the datafile size is smaller than
the total of all the restored backup files may fail to complete indicating that the datafile is full.

In rare cases, the mt_xm1 utility may return the MATTISSE INDEXKEYEXISTS error when loading an
XML file. This error can occur only if an attribute defined in a sub-class with a default value
participates in a multi-segment index.

In SQL, the execution of an INSERT statement may not always return the message corresponding to
the MATISSE NUMERICOVERFLOW error code.

The mt_sql utility returns an incorrect message when the result of a SELECT statement with
navigation is saved into a selection:
SELECT REF (c.myrel.Mycls2) FROM Myclsl c¢ INTO selOl;

In replication mode, some very large non-embedded objects (i.e. video) may not be fully replicated
on the replica server.

In replication mode, the MATISSE NOREPLSQLDUI error is not always returned when executing a
server-side update on the master database.

The commit function may take a long time to return a MATISSE_IDXKEYEXISTS error if the transaction
has modified a very large number of objects with primary key indexes.

Resolved in Matisse 9.0.1

L]

The Matisse DBMS 32-bit and 64-bit as well as Matisse Lite products are available on MacOS X.
The Enterprise Manager images have been updated to better integrate with the supported platforms.
The Enterprise Manager Lite provides access to the log file in the Audit tab of the Host node.

The Enterprise Manager Lite creates log and resource files named respectively

mt_emgrlite<username>.log and mtemgrliterc.
The mt_server create command allows you to create the configuration file for a new database.
In some cases, running a backup in the Enterprise Manager may fail.

In the Enterprise Manager Database Properties dialog, the check forbidding the creation of multiple
datafiles at the same location is not always properly enforced.

All the namespaces defined in the database are not always listed in the pull-down menu of the Meta-
Schema panels.

In some rare cases, removing hundreds of entries at once from a large index or from a large
relationship may fail.

In SQL, the execution of a block statement with a loop retrieving objects in a SELECTION variable
may fail with the MATTISSE SQLSTACKOVF error.

32

Update History

Matisse 9.0.8 Release Notes

Resolved in Matisse 9.0.0

* The Meta-Schema adds the MtNamespace class to support the definition of namespaces for all schema
objects.

* The Meta-Schema adds the MtMetaclass class which is the super-class of user-defined meta-classes.
This defines a straightforward mechanism for developers to extend the Meta-Schema.

* The Mtpomain and MtTrigger classes are no longer public classes of the Meta-Schema.
¢ In the Meta-Schema, the Mt Documentation attribute has been removed from the MtMethod class.

* The Array datatypes (MT aARRAY *) which were not supported by most of the language bindings are
no longer public types.

e Schema names follow the naming conventions defined for identifiers or symbols in the supported
programming languages.

* Thewmr TEXT data type generates non-embedded objects for large values which is the current
behavior for the list datatypes (MT _11sT *) as well as for bytes datatypes (MT BYTES, MT IMAGE, etc.).

e SQL adds the Mt Ful1lName and MtFullClassName pseudo-attributes to support namespaces.
MtObject.MtFullClassName
MtClass.MtFullName
MtAttribute.MtFullName
MtRelationship.MtFullName
MtIndex.MtFullName
MtEntryPointDictionary.MtFullName
MtNamespace.MtFullName

* New SQL pseudo-relationships have been defined on Mtclass to improve class description of classes
with inheritance.
MtClass.MtAllAttributes
MtClass.MtAllRelationships
MtClass.MtAllInverseRelationships
MtClass.MtAllSuperclasses
MtClass.MtAllSubclasses
MtClass.MtAllMethods

e In the Enterprise Manager, the Tutorial and Online Documentation menu-items in the Help menu
have been added to improve the developer’s experience.

e In the Enterprise Manager, the Manage License menu-item in the Help menu has been added to check
and update the product license key from the tool.

* The maximum capacity of the datafiles handled by the database server has been extended. The
database server can manage up to 31 datafiles on individual disks or RAID-enabled disks.

* The command lines help for mt sdl, mt xml and mt_dts has been updated to be harmonized with the
other administration commands.

* Themt sdl utility with the parse -dd1 command now parses the syntax of any type of SQL DDL
script.

Update History 33

Matisse 9.0.8 Release Notes

* The license key format has been extended to provide more appropriate control for Matisse servers
running on Virtual Machines.

e The Java binding has been extended to support Java 7.

* New C API functions have been added to support schema object namespaces
MtSTS MtCtxGetNamespace (MtContext ctx, MtOid* nspace, MT CONST MtChar* nspaceName) ;
MtSTS MtCtxGetObjectNamespace (MtContext ctx, MtOid* nspace, MtOid schemaObject) ;
MtSTS MtCtxMGetObjectFullName (MtContext ctx, MtChar** fullName, MtOid

schemaObject) ;

» Existing C API functions have been extended to support schema fully qualified names
MESTS MtCtxGetClass (MtContext ctx, MtOid* aClass, MT CONST MtChar* className);
MESTS MtCtxGetAttribute (MtContext ctx, MtOid* attribute, MT CONST MtChar*
attributeName) ;
MtSTS MtCtxGetRelationship (MtContext ctx, MtOid* relationship, MT CONST MtChar*
relationshipName) ;
MESTS MtCtxGetIndex (MtContext ctx, MtOid* index, MT CONST MtChar* indexName) ;
MtSTS MtCtxGetEntryPointDictionary (MtContext ctx, MtOid* dictionary, MT CONST
MtChar* dictName) ;

* The C++ binding documentation has been improved in term of completeness and usability.

* The Eiffel binding has been enhanced to support Eiffel 64-bit and as well as to be compatible with
Eiffel Studio 7.

* The mt_sd1 utility fails to update the Java file for a class that includes a user-defined Java method
containing format string such as in the statement below:

String.format ("%d-%s", empld, empName) ;

* In some case the SQL compiler may fail to produce the most efficient execution plan when an
attribute defined in a super-class in used in multiple indexes defined in sub-classes and that the
attribute is selected through a relationship.

* SQL pseudo-attributes o1, cLass NaMe and crass 1D defined on Mtobject are deprecated and
replaced by respectively Mtoid, MtClassName and MtClassOid.

* In some cases, the compilation of a SQL block statement may return error messages that are not
specific enough to help correcting the script.

* In some cases, the error line reported by the mt xm1 utility when a parsing error occurs may be off by
few lines.

* In some cases, the server may fail to extend a datafile beyond 64Gbytes.

* In some cases, DEADLOCKABORT errors returned by the database server may lead to a failure in the
client application.

* In the Enterprise Manager, in some cases a full backup of a database into multiple slices does not
calculate the slice size large enough to backup the full database preventing the restore of the backup
to complete successfully.

34 Update History

Matisse 9.0.8 Release Notes

5 Documentation

Matisse documents available on the Web

The following documents are available at http://www.matisse.com/developers/documentation:

Installation guides for Linux, MacOS, Windows, and Solaris

Getting Started with Matisse

Matisse SQL Programmer s Guide (includes user’s guide for mt _sql)
Matisse .NET Programmer s Guide (and example applications)
Matisse Java Programmer s Guide (and example applications)
Matisse Objective-C Programmer s Guide (and example applications)
Matisse C++ Programmers Guide (and example applications)
Matisse C API Reference

Matisse ODL Programmer s Guide (includes user’s guide for mt_sdl)
Matisse Modeler Guide

Matisse Server Administration Guide

Matisse XML Programming Guide (includes user’s guide for mt_xm1)
Matisse Data Transformation Services Guide (includes user’s guide for mt_dts)

Documents included with Matisse standard installation

Guide to Matisse documentation and other resources: readme . html
Matisse .NET Binding API Reference: docs/NET/MatisseNetBinding.chm
Matisse Java Binding API Reference: docs/java/api/index.html
Matisse Objective-C Binding API Reference: docs/objc/api/index.html
Matisse C++ Binding API Reference: docs/cxx/api/index.html

Open source bindings

Matisse Eiffel Programmer s Guide (and example applications)
Matisse PHP Programmer s Guide (and example applications)
Matisse Python Programmer s Guide (and example applications)

Documentation 35

	Matisse® 9.0.8 Release�Notes
	Contents
	1 New Features in Matisse 9.0
	1.1 Overview
	1.2 Matisse Core Model
	Namespaces
	Schema names
	Array datatypes

	1.3 Enterprise Manager Tool
	Schema Viewer
	Query Editors
	Export Schema
	Import/Export Data
	Import XML
	Export XML
	Scheduled Tasks
	Audit Log
	Log and Resource files
	Manager License
	Graphics and L&F
	Help

	1.4 Database Modeler
	1.5 Matisse ODL
	Define a Namespace

	1.6 Matisse SQL
	create namespace
	alter namespace
	drop namespace
	set current_namesp ace
	Pseudo Attributes
	Pseudo Relationships

	1.7 Schema Manager
	mt_sdl export
	mt_sdl stubgen

	1.8 Data Transformation Services
	mt_dts import
	mt_dts export
	mt_dts link

	1.9 XML Manager
	mt_xml import
	parallel import
	namespace mapping import
	mt_xml export
	parallel export
	namespace export

	1.10 Database Utility Commands
	mt_server create

	1.11 Java Binding
	Java 7
	Generating Stub Classes
	Object Factory
	SQL Execution
	Schema Names
	Examples

	1.12 .NET Binding
	Generating Stub Classes
	Object Factory
	SQL Execution
	Schema Names
	Examples

	1.13 C++ Binding
	Generating Stub Classes
	Object Factory
	SQL Execution
	Schema Names

	1.14 Eiffel Binding
	64-bit Support
	Generating Stub Classes
	Object Factory
	SQL Execution
	Schema Names

	1.15 PHP Binding
	Generating Stub Classes
	Object Factory
	SQL Execution
	Schema Names

	1.16 Python Binding
	Generating Stub Classes
	Object Factory
	SQL Execution
	Schema Names

	1.17 Objective-C Binding
	Generating Stub Classes
	Examples

	1.18 Database Configuration
	DATIODIRECT
	Datafiles

	1.19 MacOS X
	1.20 License Key Format

	2 Compatibility with Previous Releases
	2.1 Matisse 9.0 Data Migration
	Step 1
	Step 2
	Step 3

	2.2 Client Connections

	3 Platform-Specific Topics
	3.1 Linux
	3.2 MacOS
	3.3 Solaris
	3.4 Windows

	4 Update History
	Resolved in Matisse 9.0.8
	Resolved in Matisse 9.0.7
	Resolved in Matisse 9.0.6
	Resolved in Matisse 9.0.5
	Resolved in Matisse 9.0.4
	Resolved in Matisse 9.0.3
	Resolved in Matisse 9.0.2
	Resolved in Matisse 9.0.1
	Resolved in Matisse 9.0.0

	5 Documentation
	Matisse documents available on the Web
	Documents included with Matisse standard installation
	Open source bindings

