
Matisse® Server
Administration Guide

January 2017

MATISSE Server Administration Guide

Copyright © 2017 Matisse Software Inc. All Rights Reserved.

This manual and the software described in it are copyrighted. Under the
copyright laws, this manual or the software may not be copied, in whole or in
part, without prior written consent of Matisse Software Inc. This manual and
the software described in it are provided under the terms of a license between
Matisse Software Inc. and the recipient, and their use is subject to the terms of
that license.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the
government is subject to restrictions as set forth in subparagraph (c)(l)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-
7013 and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. and
international patents.

TRADEMARKS: Matisse and the Matisse logo are registered trademarks of
Matisse Software Inc. All other trademarks belong to their respective owners.

PDF generated 7 January 2017

Contents

Introduction . 12
Conventions . 12

1 Matisse Server: An Overview . 13
1.1 Basic Concepts . 13

I/O Parallelism and Copy Semantics. 13
Temporal Features . 13
Collect Versions . 14
Transaction Model and Concurrency Control 14
Disk Fault Tolerance . 14

1.2 Database Environment . 14
Configuration File . 14
Data Files . 15
Log File . 15

1.3 Managing Your Database . 16
1.4 Transferring Databases Between Hosts . 16

2 The Matisse Environment . 17
MATISSE_CFG. 17
MATISSE_HOME. 18
MATISSE_LOG. 18
MATISSE_NET_PATH . 19
MATISSE_PORTMON_ADDR . 20
MATISSE_PORTMON_NAME . 21
MATISSE_SMLISTENER_ADDR. 21

3 Matisse Connections . 22
3.1 Introduction . 22
3.2 Matisse Connections . 22

Setting Up a Connection Environment . 23
Setting a Transport Priority . 24
Port Monitor Daemon Log File . 25
Port Monitor Utility mt_pmadm . 25
mt_pmadm . 26

3.3 Connections through Firewalls . 29
3.4 Portmon Messages . 30

Errors Resulting from the Utility mt_pmadm 30
Error Messages of the Port Monitor Log File. 32

4 Server Manager Listener . 36
4.1 Introduction . 36
4.2 Managing Remote Operations . 36
Contents 3

4.3 Controlling Remote Operation Requests . 36
4.4 Managing database autorestart . 37
4.5 Running mt_smlistener daemon . 37

Setting Up a Connection Environment. 37
SMListener Daemon Log File . 37
Starting a SMListener Daemon . 37
Stopping the SMListener daemon . 38

4.6 Connections through Firewalls . 39

5 Matisse Access Control .40
5.1 Introduction . 40

Different Privileges. 40
System User . 40
Enabling Access Control . 40

5.2 Managing Users . 41
Operating System Access Control . 41
Using Matisse Access Control . 41
Add/Drop/ Modify Users. 41
Create an Administrator. 41

5.3 Database Connection API . 42

6 Configuring a Database .43
6.1 Configuration File . 43

File Syntax . 43
6.2 Configuration Parameters . 43

Mandatory Parameters . 44
Default Values . 44
Automatically Updated Parameters . 45
NAME . 45
PAGESIZ . 45
CACHESIZ . 46
SECURITY . 46
AUTOEXTEND . 47
DATEXTENDSIZ . 47
AUTOCOLLECT . 47
AUTOCOLLECTFREQ . 48
OBJTABLESIZ . 48
OBJTABCLRFREQ. 49
AUTORESTART . 49
DATFULLINIT . 49
DATINITSIZ . 49
DATINMEMORY . 50
MEMORYTRANS . 50
MAXSQLDOP . 50
MAXSQLTHRDPOOL. 51
MAXSRVLOGFILES. 51
4 MATISSE Server Administration Guide

MAXBKPLOGFILES . 51
TCPKEEPALIVE. 52
PORTS . 52
PATH . 53

6.3 Using Disk Partitions as Datafiles . 54
Why Use Partitions? . 54
Check for Partitions That Contain the First Sector on UNIX 54
Checking Partitions with File Systems on UNIX 55
Checking for Swap Partitions on UNIX . 55
Declaring a Partition in a Configuration File 55

7 Using the Enterprise Manager . 57
7.1 Starting the Enterprise Manager . 57
7.2 Remote Administration . 58
7.3 Creating a Database . 58
7.4 Stopping a Database . 59
7.5 Monitoring Database Server . 59
7.6 Managing Database Server Operation Control 61
7.7 Managing Database Users . 61
7.8 Managing Datafiles . 62
7.9 Managing Backups . 64
7.10 Managing Open Connections . 66
7.11 Managing Active Transactions . 66
7.12 Monitoring a Database . 67

Changing the Refresh Interval. 71
Taking an Activity Snapshot . 71

7.13 Restoring a database . 72
7.14 Scheduling tasks . 73

Executing a User-defined Script . 75

8 Collecting the Versions of a Database . 77
How the Collect Versions Mechanism Works 77
Automatic Version Collection . 77
Kinds of Version Collections . 77
Scheduled Collection on MS Windows . 78
Version Collection Log File . 78

9 Administration Commands . 80
Database Shutdown Restart . 81
Managing Datafiles . 81
Disk Mirroring . 81
Using disk partitions . 82
Managing Users . 82
Managing Connections . 82
Managing Transactions . 83
Managing Versions . 83
Contents 5

Monitoring a Database. 83
Extending the Page Server Cache . 84
Extending the Object Table Cache . 85
Changing the Run Frequency of Operations 85
Managing License Keys. 85

10 Database Transactional Replication .86
10.1 Introduction . 86

Feature Overview . 86
Replication Benefits . 86

10.2 Replication Establishing and Disestablishing 87
Before Establishing Replication . 87
Establishing Replication. 87
Retry or Noretry Mode . 87
Disestablishing Replication . 87
Swapping Roles Between Master and Replica 88

10.3 Replication Monitoring . 88
Replication status . 89

10.4 Resynchronization at restart of after replica failure 89
Shutdown Restart . 89
Network or Replica Failure . 89
Switching to the replica in case of master failure. 90

11 Database Snapshot Replication .92
11.1 Introduction . 92

Feature Overview . 92
Benefits . 92
Design Overview . 93

11.2 Replication Establishing . 93
Before Establishing Replication . 93
Establishing Replication. 93
Publishing Changes. 94
Disestablishing Replication . 95

11.3 Replication Monitoring . 96
Publisher Sate . 96
Subscriber Sate . 96

11.4 mt_xsr utility . 97
mt_xsr publish . 97
mt_xsr subscribe . 97
mt_xsr describe . 98
mt_xsr unpublish . 98
mt_xsr unsubscribe . 98

12 Database Backup and Restore .100
12.1 Introduction . 100

Full and Incremental Backup . 100
6 MATISSE Server Administration Guide

Parallel Backup . 100
12.2 Running a Full or Incremental Backup . 100

Running a Full Backup . 100
Running an Incremental Backup . 100
Automated Backups . 101
Backup Journal Files . 101

12.3 Restore . 102
12.4 Running a Parallel Backup . 102
12.5 Parallel Restore . 103

Appendix A Starting Matisse Server as a Windows Service 104
A.1 Introduction . 104
A.2 Installation . 104
A.3 Specifying Matisse Server and Its Parameters 104
A.4 Starting and Stopping the Matisse Server Service 105
A.5 Uninstall . 105

Index . 106
Contents 7

8 MATISSE Server Administration Guide

Tables

Table 6.1 Default Values of Configuration Parameters 44
Table 7.1 Summary Information about All Connections 68
Table 7.2 Detailed Information about Specific Connections 69
Table 7.3 Information about Datafiles . 69
Table 7.4 Configuration Information . 70
Table 7.5 Information about Transactions . 70
Table 8.1 Collect Levels . 77
Table 10.1 Replication info status . 89
Tables 9

10 MATISSE Server Administration Guide

Figures

Figure 2.1 Matisse Initial Directory Structure . 17
Figure 3.1 Matisse Server with portmon. 22
Figure 3.2 mt_portmon Daemon under Solaris . 23
Figure 7.1 Create Database . 58
Figure 7.2 Stop Database. 59
Figure 7.3 Database servers state monitoring . 60
Figure 7.4 Servers activity and resources monitoring 60
Figure 7.5 Server Operation Control Manager . 61
Figure 7.6 Adding a user . 62
Figure 7.7 Creating a mirror datafile . 63
Figure 7.8 Database Backup Manager . 65
Figure 7.9 Killing an active connection . 66
Figure 7.10 Aborting a transaction from the Monitor window 67
Figure 7.11 Matisse Monitoring: . 68
Figure 7.12 Refresh interval choice . 71
Figure 7.13 Freeze button from the monitoring menu-bar 71
Figure 7.14 Unfreeze button from the monitoring menu-bar 71
Figure 7.15 Database restore wizard . 72
Figure 7.16 Database Task Scheduler . 74
Figures 11

12 MATISSE Server Administration Guide

Introduction

Conventions
This document uses the following conventions:

Text The main text is written in characters like these.

Code All computer variables, code, commands, and interactions are shown in this
font.

Also, any code and commands that the user must enter are shown in this font on
a gray background.

variable In a program example, or in an interaction, a variable (anything that is
dependent on the user environment) is written in italics.

References References to another part of the MATISSE documentation are made as shown
here.

1 Matisse Server: An Overview

1.1 Basic Concepts
The Matisse Server operates as a back-end server that manages a repository of
persistent objects. Client applications connect to the server through the network
or through a local transport.

The two primary tasks of the Matisse Server are to ensure that:

All objects remain available in a consistent state in the presence of system
failures (recovery management)

When several clients access a shared set of objects simultaneously in read
or write mode, each client gets a consistent view of the database

I/O Parallelism
and Copy
Semantics

The Matisse Server provides high-end parallelism for multimedia streaming and
large databases for a large number of users.

The Matisse Server is implemented on top of kernel threads and scales linearly
as new CPUs or new disks are added. Objects are not updated in place: a new
version of an object can be written to any available disk with optimal load
balancing across disks.

Temporal
Features

The Matisse Server intrinsic Versioning is the key underlying technology that
differentiates it from other storage management systems. Intrinsic Versioning is
the automatic generation and control of object versions.

The figure at right shows the creation of three
objects by a transaction at time 1.

When the value of an object changes, a new
copy of the object is created, rather than the
current version of the object being updated in
place. The figure at right represents the
creation of a fourth and a fifth object, as well
as the modification of objects B and C. The database can be queried
consistently as of time 1, without affecting the current transaction processing
and without locking any data.

1
A B C D E

1
2

A B C D E
Matisse Server: An Overview 13

Collect Versions The collect versions mechanism is run
automatically to reclaim disk space. It preserves
the most recent version and the versions that
have been explicitly saved. The figure at right
represents the contents of a database after a
collect version has been performed.

Transaction
Model and
Concurrency
Control

Concurrency control is enforced by read or write database locks. The locking
granularity is at the sub-object level, as the Matisse Server locks separately the
relationship part of an object and the attribute part of an object.

In transaction mode, the Matisse Server enforces traditional two phase locking
to ensure consistent—serializable—transactions. As mentioned above,
transactions are not affected by version access queries, the later can run
concurrently without locking.

Disk Fault
Tolerance

The Matisse Server provides disk fault tolerance through mirroring.

When there is a disk failure, the database remains online and Matisse Server
automatically uses mirrored data as necessary. When a new disk is available,
you can use the DBA Tool to reestablish mirroring. It is not necessary to stop
Matisse Server to replace the failed disk

1.2 Database Environment
A Matisse database is identified by its name and the name of the host machine
where it resides. It is made up of three major components:

A configuration file

Files or disk partitions (“datafiles”)

A log file

Configuration
File

The configuration file contains the parameters that define the database—the
location and size of its datafiles, the execution parameters of the database, and
so on.

You can modify the configuration file with the DBA Tool or the command line
administrations commands. The DBA tool is described in section 7, Using the
Enterprise Manager.

1
2
3
4

A B C D E
14 MATISSE Server Administration Guide

To perform operations such as initialization, you must have sufficient privileges
on the database configuration file. Make sure that you have the read (r) and
execute (x) permissions on the directory defined by the environment variable
MATISSE_CFG before attempting one of these operations. If you do not have
sufficient privileges, the DBA Tool will not perform the operation you request.

Data Files A database may have one or several datafiles. Distributing the database over
several disks, with one datafile per disk, provides better security and
performance.

NOTE: For maximum safety and best performance, we strongly
recommend you not define datafiles on the system disk.

Data files are defined in the configuration file. You define a datafile by
specifying either a directory path or an entire unformatted disk partition (raw
device) for use by the database. Using a disk partition allows Matisse to access
data faster and provides better fault tolerance, as it eliminates the risk of file
system corruption.

CAUTION: When it is necessary to add, resize, or delete a datafile, use
only the Files menu commands in the Enterprise Manager or
the commands discussed in section 9, Administration
Commands. Manually editing the text of the configuration file
could corrupt the database.

Log File The log file records the main administrative operations that are run on the
database. Its purpose is to help you track the activity on a database.

In addition, the log file lists the possible errors that may occur on the database,
for instance, “not enough disk space”, when all the datafiles are full.

To perform operations such as initialization, version collection and several
others, you should have read (r) write (w) and execute (x) permissions on the
directory defined by the environment variable MATISSE_LOG. If you do not
have sufficient privileges, the DBA Tool does not perform the operation you
request.

NOTE: If you are used to relational DBMSes, you may expect a “log file”
to contain an entry for every single update, since such entries
are required to perform rollbacks and other data-recovery
functions after a system failure. This is not the case with
Matisse: its data-recovery features rely on its intrinsic versioning
architecture, so there is no need for a traditional transaction
redo log.
Matisse Server: An Overview 15

1.3 Managing Your Database
You can manage your database in either of two ways:

Using the DBA Tool

Entering shell level commands

This document provides you with all the information required to manage your
database either by typing shell commands or by using the DBA Tool.

1.4 Transferring Databases Between Hosts
You can transfer databases directly between platforms with identical byte
swapping. You can copy a database directly from one platform to the other. If
you do this, however, you must copy all the database files. You will be able to
use the copied database only if all the files are copied.
16 MATISSE Server Administration Guide

2 The Matisse Environment

Assuming that /opt/matisse is the directory where Matisse is installed, the
product is initially installed as shown in Figure 2.1.

Figure 2.1 Matisse Initial Directory Structure

Matisse defines environment variables that:

Define setup information related to your database

Help you find where this information is located (that is, in which directory)

It is recommended that you first define MATISSE_HOME, in order to make the
other variables independent from the location of the Matisse installation. The
Matisse environment variables are listed and described in the following
sections.

MATISSE_CFG

Purpose MATISSE_CFG is an environment variable that points to the directory that
contains the configuration files.

Immediately after installation, MATISSE_CFG points to the following
directory:

/opt/matisse/config

It is recommended that you set MATISSE_CFG to a directory other than this
default. By doing this, you guarantee that the Matisse database configuration
files will not be created in the installation directory.

In this way, when an upgrade or a new release is installed, it will not be
necessary to copy the configuration file from the default MATISSE_CFG
directory to a newly created directory.

/opt/matisse

bin include lib

MATISSE_HOME

MATISSE_HOME/log MATISSE_HOME/config
The Matisse Environment 17

Note that both the port monitor and the DBA Tool use MATISSE_CFG, which
must be set for these executables to work properly.

NOTE: If the MATISSE_CFG environment variable is not set, Matisse uses
the config subdirectory of the directory defined by MATISSE_HOME
as the config directory.

MATISSE_HOME

Purpose When MATISSE_CFG and MATISSE_LOG are not specified, Matisse checks that
MATISSE_HOME is specified. If it is specified, Matisse operates as if
MATISSE_CFG and MATISSE_LOG point respectively to the config and log
sub-directories of MATISSE_HOME.

After installation, the variable should point to the installation directory.

It is recommended that you set MATISSE_HOME to a directory other than this
default. By doing this, you guarantee that the Matisse log and configuration
files will not be created in the installation directory.

If you do this, the MATISSE_HOME directory is independent from any Matisse
version. In this way, when an upgrade or a new release is installed, it is not
necessary to copy the files and directories from the previous MATISSE_HOME
directory to the newly created one.

The MATISSE_HOME variable is used by the Port Monitor.

MATISSE_LOG

Purpose MATISSE_LOG is an environment variable that points to the directory that
contains the log files of the Matisse databases as well as log files of the port
monitor daemons. These log files contain messages concerning either database
administration or port monitor operations. They also provide information on
errors.

Immediately after installation, MATISSE_LOG points to the following directory:

/opt/matisse/log

It is recommended that you set MATISSE_LOG to a directory other than this
default. By doing this, you guarantee that the Matisse log files will not be
created in the installation directory.
18 MATISSE Server Administration Guide

In this way, when an upgrade or a new release is installed, it will not be
necessary to copy the files and directories from the default MATISSE_LOG
directory to a newly created directory.

Note that both the port monitor and the DBA Tool use MATISSE_LOG. The
environment variable MATISSE_LOG must be set for the DBA Tool to work
properly.

NOTE: If the MATISSE_LOG environment variable is not set, Matisse uses
the log sub-directory of the MATISSE_HOME directory as the log
directory.

MATISSE_NET_PATH

Purpose MATISSE_NET_PATH is an optional environment variable used by the client
application that lets you define the order in which Matisse searches for a
transport when a client requests connection to the server. It also lets you limit
the kind of transport searched to one kind of transport.

By default, the order in which Matisse searches for a transport when a client
requests connection (all Unix but Solaris platforms) is the following:

local

tcp

for Solaris platforms:

ticots

tcp

or, for MS Windows platforms:

tcp

If you want to set the order in which Matisse searches for a transport when a
client requests connection, you can do so by means of the MATISSE_NET_PATH
environment variable.

The variable definition has the following syntax:

transport1:transport2

The keywords used to specify the different transports are of course tcp and
local (or ticots on Solaris hosts). You can specify any order. For example,
to specify that tcp transport be searched first, and local next, the
MATISSE_NET_PATH environment variable must have the following definition
(on a non Solaris host):

tcp:local
The Matisse Environment 19

Note that you can also use MATISSE_NET_PATH to limit the kind of transport
searched to one kind of transport. To specify that only local transport be used,
for example, the MATISSE_NET_PATH environment variable must have the
following definition:

local

MATISSE_PORTMON_ADDR

Purpose On each machine on which a Matisse server is running there must be a port
monitor for each transport used by the database.

When a Matisse server is started on this machine, it has to notify the port
monitors of its existence. When a client application needs to connect to a
database, it asks to the port monitor on the specified host to initialize the
connection. Both server and client need to know at which address the port
monitor is listening.

MATISSE_PORTMON_ADDR is an optional environment variable that defines the
address the port monitors for each transport are listening to.

The variable definition has the following syntax:

transport-address[:transport-address]*

MS Windows On MS Windows platforms, suitable values for the transport argument is tcp.

To specify, for example, the tcp transports for a server, you can define the
MATISSE_PORTMON_ADDR address as follows:

tcp-7421

UNIX Non Solaris On UNIX hosts, suitable values for the transport argument are tcp and local.

When a Matisse server is started, it has to notify the port monitors of its
existence. To know which port monitor to use, it looks if this variable is
defined. If it is the case, the value of MATISSE_PORTMON_ADDR is used to find
the port monitors.

Otherwise, the local or NIS file /etc/services is used for tcp.

For the local transport, if MATISSE_PORTMON_ADDR is not defined, the Matisse
server will use the default value /tmp/mtportmon_local.socket.

When a client application is running on a non Solaris host, it will use the same
operations than described above to find where to address the port monitor.

To specify, for example, the tcp and local transports for a server, you can
define the MATISSE_PORTMON_ADDR address as follows:
20 MATISSE Server Administration Guide

tcp-7421:local-/var/tmp/mt_local.socket

NOTE: Solaris platforms do not use the variable
MATISSE_PORTMON_ADDR.

Solaris On Solaris hosts, suitable values for the transport argument are tcp and
ticots.

For tcp, only the local or NIS /etc/services file is used, and for ticots,
only the file /etc/net/ticots/services is used. These files are used by
both the Matisse server and client application.

MATISSE_PORTMON_NAME

Purpose MATISSE_PORTMON_NAME is an optional environment variable that defines a
name for the port monitor service (port monitor). By default, the name of the
port monitor service is mtportmon. You can set a different name for the port
monitor service by setting this environment variable to the character string you
choose.

MATISSE_SMLISTENER_ADDR

Purpose MATISSE_SMLISTENER_ADDR is an optional environment variable that defines
the address the Matisse Server Manager Listener (SMListener) is listening to.
By default, SMListener address is 7412. You can set a different address for the
smlistener daemon by setting this environment variable to the number you
choose
The Matisse Environment 21

3 Matisse Connections

3.1 Introduction
This section describes how to establish connections between client and server
and how to create and administer mt_portmon daemons on all supported
platforms.

3.2 Matisse Connections
Matisse is a multi-protocol server. For each kind of client-server transport
supported, an mt_portmon daemon is needed. This daemon must be started
before connections between the server and the client can occur.

There is a different daemon for each kind of transport. The two different
kinds of transport currently supported are tcp and local. The tcp transport is
TCP/IP on a local area network (LAN). The local transport is TCP for
connections between a client and server located on the same host.This
transport is a virtual circuit-mode transport provider. Under Solaris, the
local transport is Ticots-based. Ticots offers connection-oriented service
types. It supports the same service types (T_COTS) supported by the ISO
transport-level model.

Figure 3.1 illustrates the operation of the mt_portmon daemon.

Figure 3.1 Matisse Server with portmon

The server connects to an mt_portmon daemon and supplies its address. Any
client that wants to connect to the server is then free to do so.

Server HostClient Host

CLIENT MATISSE SERVER

mt_portmon

1
2

3

4

22 MATISSE Server Administration Guide

A connection between a client and the server is established in the following
way. The client requests the address of the server from the mt_portmon
daemon. The daemon returns the address of the server to the client, as
illustrated above by the grey arrow leading to the client. Then the client uses
this address to connect to the server.

Under Solaris the connection mechanism is slightly different, the mt_portmon
daemon connects the client directly to the server, as shown in Figure 3.2.

Figure 3.2 mt_portmon Daemon under Solaris

A connection between a client and a server is established in the following way.
The client requests the mt_portmon daemon for the system and then connects
to it. The mt_portmon daemon passes the connection descriptor to the
MATISSE server. The client and the server are then connected directly. They
will have no further communication with the mt_portmon daemon.

NOTE: This mechanism simplifies the settings to establishing a
connection to a database server protected by a firewall (see
section 3.3, Connections through Firewalls).

Setting Up a
Connection
Environment

When you know which kind of transport you use, you can define it. There are
two ways you can do this:

MATISSE_PORTMON_ADDR environment variable

Local or NIS /etc/services file (for tcp transport only)

Otherwise, defaults are used (7421 for tcp transport,
/tmp/mtportmon_local.socket for local transport).

You can use the MATISSE_PORTMON_ADDR environment variable to define
transport for both tcp and local transport. Note that if your host supports both
kinds of transport, you can define both of them by means of this variable.

The variable definition has the following syntax:

Server HostClient Host

CLIENT MATISSE SERVER

mt_portmon

1
2

3

4

Matisse Connections 23

transport-address[:transport-address]

For the argument transport, suitable values are tcp and local.

Appropriate values for the argument address depend on the transport that is
specified. When you specify tcp, the address that follows must be the number
of a TCP port. When you specify local, the address must be the local
pathname.

To define both tcp and local transport, you can define the
MATISSE_PORTMON_ADDR environment variable as follows:

tcp-7421:local-/tmp/mtportmon_local.socket

This environment variable must also be defined by the client.

For TCP/IP, you can specify the transport in two other ways. The easiest is to
add the following line to the file /etc/services:

mtportmon port/tcp

The string mtportmon is the default name of the Portmon port monitor.

If you prefer, you can change the default name of the Portmon port monitor to
another. To do this, set the MATISSE_PORTMON_NAME environment variable to
the new name.

The other way is to add similar information to a NIS file. If you choose this
third method, see you system manager for further information.

Solaris Under Solaris, for ticots transport, you must define the service associated
with the port monitor. To do this, you must enter the name of the service in the
file /etc/net/ticots/services. To add the service associated with the port
monitor, insert the following line in this file:

mtportmon mtportmon

NOTE: The above example assumes that you have not changed the
default name of the Matisse port monitor service.

Setting a
Transport
Priority

By default, the order in which Matisse searches for a transport when a client
requests connection (all Unix except Solaris platforms) is the following:

local

tcp

Solaris Under Solaris, the local transport is ticots, so by default the order is the
following:

ticots
24 MATISSE Server Administration Guide

tcp

If you want to set the order in which Matisse searches for a transport when a
client requests connection, you can do so by means of the MATISSE_NET_PATH
environment variable.

The variable definition has the following syntax:

transport1:transport2

The keywords used to specify the different transports are of course tcp and
local for servers installed on Unix hosts but Solaris ones. You can specify any
order. For example, to specify that tcp transport be searched first, and local
next, the MATISSE_NET_PATH environment variable must have the following
definition:

tcp:local

Solaris tcp:ticots

Note that you can also use MATISSE_NET_PATH to limit the kind of transport
searched to one kind of transport. To specify that only local transport be used,
for example, the MATISSE_NET_PATH environment variable must have the
following definition:

local

Solaris ticots

Port Monitor
Daemon Log
File

Each time you start a port monitor daemon, a port monitor daemon log file is
opened in the MASTISSE_LOG directory. The name of the log file is built from
the name of the host and the name of the port monitor daemon specified by the
pmtag of the mt_pmadm command.

For example, if the name of a port monitor daemon were mttcp and the name
of its host were jade, the name of the port monitor daemon log would be the
following:

mttcp.jade.log

If a problem occurs, the port monitor daemon log file may contain a message.
For a description of the error messages, please refer to section 3.4, Portmon
Messages.

Port Monitor
Utility
mt_pmadm

The mt_portmon daemons (in other words, the port monitor daemons) are
managed by means of the mt_pmadm utility. The syntax of this command and its
uses are described on the following pages.

Note that to use mt_pmadm, you must have read and write permissions on the
MATISSE_CFG and MATISSE_LOG directories.
Matisse Connections 25

mt_pmadm

Syntax mt_pmadm -p pmtag options

UNIX Options -p name

Specifies a name for the port monitor daemon. This name is used to identify
the port monitor daemon. This option must always be specified when using
the mt_pmadm command.

-s

Specifies that a port monitor daemon be started.

-t transport

Specifies the kind of transport that is managed by the port monitor daemon.
The two values that are possible are tcp and local.

-D

Specifies if the port monitor daemon is started in enabled mode or disabled
mode.

-k

Deletes the port monitor daemon of the specified name.

-d

Disables a port monitor daemon that has been previously started and
enabled.

-e

Enables a port monitor daemon that has been previously started and
disabled.

-l

Lists the status of the port monitor daemon. Indicates if the port monitor
daemon is enabled or disabled.

-L

Lists the services (or database processes) provided by the port monitor
daemon.

-r

Removes a service from a port monitor daemon.

-S

Specifies the service to be removed from a port monitor daemon.

-h

Provides help on the mt_pmadm command and its options.
26 MATISSE Server Administration Guide

MS Windows
Options

-s

Specifies that a port monitor daemon be started.

-d

Disables a port monitor daemon that has been previously started and
enabled.

-e

Enables a port monitor daemon that has been previously started and
disabled.

-L

Lists the services (or database processes) provided by the port monitor
daemon.

-r

Removes a service from a port monitor daemon.

-S

Specifies the service to be removed from a port monitor daemon.

-h

Provides help on the mt_pmadm command and its options.

Arguments pmtag

The name of the port monitor daemon. The name must be no more than 14
characters in length. The pmtag does not specify the name of the port
monitor. The name of the Portmon port monitor is mtportmon. You can
change the name of the Portmon port monitor by means of the
MATISSE_PORTMON_NAME environment variable.

Purpose This command is used to define, start, enable, disable, and provide the status of
a port monitor daemon. Note that if you encounter error messages when using
mt_pmadm, refer to for an explanation and a possible solution.

Starting a Port
Monitor Daemon

To start a port monitor daemon, use mt_pmadm with the -s, -p, and -t
options. As described under the heading Options, these three options specify
respectively:

That the port monitor daemon should be started

A name for the port monitor daemon

The transport managed by the port monitor daemon

To start a port monitor daemon named mttcp that handles tcp connections for
example, you would type the following:

mt_pmadm -s -p mttcp -t tcp
Matisse Connections 27

After typing this command, the port monitor daemon named mttcp is started
and enabled.

You can also start a port monitor daemon and leave it disabled. To do this, you
need to specify the -D option when you start the port monitor daemon, as
shown below:

mt_pmadm -s -p mttcp -t tcp -D

Disabling a Port
Monitor Daemon

To disable the port monitor daemon, type the following:

mt_pmadm -d -p mttcp

After you type this command, the port monitor daemon named mttcp is
disabled. When the port monitor daemon has been disabled, it cannot register a
service (database process).

Enabling a Port
Monitor Daemon

To enable a port monitor daemon that has been previously disabled, type the
following:

mt_pmadm -e -p mttcp

Checking a Port
Monitor Daemon

To check whether a port monitor daemon is enabled or disabled, use the
following:

mt_pmadm -l -p mttcp

The system then tells you if the port monitor daemon is enabled or disabled.

Listing the Port
Monitor Daemon’s

Services

You can also check which services, or database processes, are available through
the port monitor daemon. Note that these services are the different Matisse
databases that are registered on the port monitor daemon. To list these services,
type the following:

mt_pmadm -L -p mttcp

The Matisse databases (services) that are registered with the port monitor
daemon are then displayed, as shown in the example below:

20-Jun 12:40:34 PMADM-I-PMSTATE, Port Monitor is enabled

20-Jun 12:40:34 PMADM-I-TRPTYPE, Transport type: tcp

20-Jun 12:40:34 PMADM-I-SVCLIST, Registered services:

EXAMPLE

MEDIA

Removing a Service
from a Port Monitor

Daemon

If you want to remove one of these services for whatever reason, you can do so
with the -r, -p, and -S options. To remove the database media from the port
monitor daemon mttcp, for example, you would type the following:

mt_pmadm -r -p mttcp -S media
28 MATISSE Server Administration Guide

NOTE: There is almost no reason why you would want to remove a
service from a port monitor daemon. Do not use this option
unless a server that is listed as a service is no longer available.

Removing a Port
Monitor Daemon

In addition to removing a service from a port monitor daemon, you can also
remove a port monitor daemon by means of the mt_pmadm command. To do
this, you must specify the -k option. The following example shows you how:

mt_pmadm -k -p mttcp

Getting Help To get help on the mt_pmadm command, use the -h option, as shown below:

mt_pmadm -h

3.3 Connections through Firewalls
In order to establish a connection to a database server protected by a firewall,
you must open in the firewall the TCP port used by the Port Monitor daemon
and the TCP ports used by each database server.

To configure your database servers to accept remote TCP connections, update
your firewall settings as follows:

1. Open the TCP port used by the Port Monitor daemon. The default port
number is 7421.

2. Open a TCP ports range for the database servers accessed through the
firewall.

3. Update the PORTS database configuration parameter of each database server
with the TCP port number range opened in the firewall. Refer to section 6.2,
Configuration Parameters for more details.

NOTE: The port numbers range should not include the port number
used by the Matisse port monitor

NOTE: On Solaris, steps 2 and 3 are not necessary since the Matisse
Port Monitor on Solaris forwards the connection on 7421 to the
database servers. Therefore opening the TCP port used by the
Port Monitor daemon is enough.
Matisse Connections 29

3.4 Portmon Messages

Errors Resulting
from the Utility
mt_pmadm

This section lists the different messages related to portmon that you may
encounter, either when you use one of the utilities that manage the port monitor
or when viewing the port monitor log file.

BADANSWER Bad answer message from port monitor

The message received from the port monitor is erroneous.

CMDRCVFAILED Command message receive failed

Unable to read from the communication pipe.

Solution Check that the port monitor is running.

CMDSNDFAILED Command message send failed

Unable to write to the communication pipe.

Solutions Check that the port monitor is running.

Extend system resources (memory).

CREATEPIPEFAILED Creation of a communication pipe failed

Unable to create pipes required for communication between mt_pmadm and
mt_portmon.

Solutions Check that MATISSE_HOME or MATISSE_CFG are defined with valid
pathnames.

Check that the user has sufficient privileges to write to the directory defined
by MATISSE_CFG.

Check for system resources (no i-node)

INVTAGSIZE The specified tag is too long.

The argument pmtag is a string longer than the maximum supported length of
14 characters.

Solution Try again with a shorter name.

NOPERM Unable to kill port monitor, no permission

It is impossible to send a SIGTERM signal to the mt_portmon process because
it has been started by another user.

Solution Try again while logged in with root privileges.

OPENPIPEFAILED Open communication pipe failed
30 MATISSE Server Administration Guide

Unable to open pipes required for communication between mt_pmadm and
mt_portmon.

Solutions Check that MATISSE_HOME or MATISSE_CFG are defined with valid
pathnames.

Check that the user has access to the pipes (in the MATISSE_CONFIG
directory).

PMNORUNNING Port Monitor is not running

The specified port monitor does not exist.

Solutions Check the definitions of MATISSE_HOME or MATISSE_CFG.

Use the correct port monitor name as previously defined by the pmtag
argument.

PMNOTFOUND Port monitor not found

The environment variable PATH is not correctly set.

Solution Add the path to the Matisse binaries in the PATH environment variable.

PMRUNNING Port Monitor already running

You tried to start a port monitor with the same name as one already running.

Solution Try starting a port monitor with a different name.

STARTFAILED Start of the port monitor failed

The start of the port monitor failed. Execution of the command was terminated
unsuccessfully.

Solutions mt_portmon must be executable

Check system resources (processes, etc.)

SVCLISTFAILED Unable to list services

An attempt to retrieve information about services failed.

Solutions Check that some virtual memory is available.

Check if the port monitor is running.

SVCNOREGISTER Service [service name] is not registered

The requested service is not registered by the port monitor.

Solutions Check values for service and pmtag.

Check the definitions of MATISSE_HOME or MATISSE_CFG.

SVCRMFAILED Removing service [service name] failed

The attempt to remove a service resulted in a failure. The port monitor may
process subsequent requests incorrectly.
Matisse Connections 31

Solutions Check if the file system where the MATISSE_CFG directory is located is
full.

For save operation, after error fix, restart the port monitor.

Error Messages
of the Port
Monitor Log File

This section lists all the error messages that may be logged in the port monitor
log file on non Solaris hosts:

CMDRCFAILED Command message receive failed

An error occurred during message receive on pipe.

Solutions pmadm has failed. Restart it.

No more memory available. Increase swap.

CMDSNDFAILED Command message send failed

An error occurred during message send on pipe.

Solution No more system resources. Increase them.

CONNBROKEN Connection broken for [transport endpoint | STREAM pipe]

Endpoint communication is broken.

Solution Check your system.

ENDPOINTFAILED Creation of endpoint communication failed

Unable to create and bind socket.

Solution For tcp transport, check if the port number is already used. For local
transport, check that the path defined is not already used.

INITFAILED Port Monitor initialization failed

Unable to initialize port monitor.

Solutions Check the definitions of MATISSE_HOME or MATISSE_CFG. An invalid path
may be specified.

Check the privileges on the MATISSE_CFG directory. The owner must have
write access on this directory.

INVTRANSPORT Invalid transport

The transport specified is not supported.

Solution Specify a valid transport: tcp or local.

OPENLOGFAILED Open log file failed

Unable to open log file for daemon.
32 MATISSE Server Administration Guide

Solution Check the paths specified by MATISSE_HOME or MATISSE_LOG. An invalid path
may be specified.

OPENPIPEFAILED Open communication pipe failed

Unable to open pipes for communication between mt_pmadm and mt_portmon.

PMADDRNOTFOUND Port Monitor Address not found for specified transport

Unable to find port monitor address.

Solution Check that in NIS or /etc/services, there is a service named mtportmon or
named the same as the value of the environment variable
MATISSE_PORTMON_NAME.

SVCALREGISTER Service [service name] is already registered

A service (database) of the same name is already registered.

Solution Change the name of the database.

SVCNOREGISTER Service [service name] is not registered

The service is not registered. A client has tried to connect to an unregistered
database.

Solutions Check if the database is running.

Check name of the database and the host.

SVCREGFAILED Registering service [service name] failed

Registering a service failed. An attempt to register a service (a database) has
aborted due to a file operation error.

Solution Check space available in the MATISSE_CFG directory.

SVCUNREGFAILED Unregistering service [service name] failed

Unregistering a service failed. An attempt to unregister a service (a database)
failed due to a file operation error.

Solution Check space available in the MATISSE_CFG directory.

TRPRCVFAILED Transport message receive failed

An error occurred during message receive on tcp or local transport.

Solutions No more system resources. Check swap.

Check your network.

TRPSNDFAILED Transport message send failed

An error occurred during a message send on tcp or local transport.

Solutions No more system resources. Increase them.

Check your network.
Matisse Connections 33

UNKNOWNMSG Unknown message received

Unknown message received from client or server.

Solution Check your network.
34 MATISSE Server Administration Guide

Matisse Connections 35

4 Server Manager Listener

4.1 Introduction
Matisse Server Manager Listener (SMListener) manages remote operation
requests on a local network. The mt_smlistener daemon also controls the
denial of operations execution on the machine it is running on. This section
describes how to start and administer mt_smlistener daemon on all supported
platforms.

4.2 Managing Remote Operations
The SMListener daemon is responsible for creating new databases, starting and
stopping databases as well as managing backups and restore operations. The
SMListener daemon also collects server configuration information as well as
activity and resource usage information. It includes CPU activity, memory
consumption and disk usage.

4.3 Controlling Remote Operation Requests
The mt_smlistener daemon also controls the denial of operations execution.
There are currently four operation types controlled by the SMListener:

Grant/Revoke Operation controls

Create/Init/Start/Stop databases

Add/Update/Remove Datafiles

Backup/Restore Databases

By default, there is no operation control and anyone who can access locally or
remotely a database server can run DBA operations.

To enable DBA operation controls, you need to log on the server, run Matisse
Enterprise Manager and select the 'Operation control enabled' check box. This
operation will create a Matisse Server Manager administrator who will be able
to grant/revoke DBA operation permissions to any Matisse local and remote
users. A Matisse user needs to have a login on the local or remote machine.

NOTE: Only the user who has enabled DBA operation controls, can
disable it.
36 MATISSE Server Administration Guide

4.4 Managing database autorestart
The SMListener utility is also responsible for restarting database servers
automatically after a reboot of the machine. It restarts all databases with the
AUTORESTART database configuration parameter set to 1. When this parameter
is set to 0, no action is performed

4.5 Running mt_smlistener daemon
The mt_smlistener daemon handles all the remote operation requests sent by
local or remote Enterprise Manager tools. The daemon is listening on a TCP
port. The default port number used by the SMListener is 7412.

Setting Up a
Connection
Environment

If you cannot use the default port number, you can redefine it. There are two
ways you can do this:

Configuration file mtsmlistener.cfg file in the MATISSE_CFG directory

You can update the MATISSE_SMLISTENER_ADDR parameter in the
configuration file before starting the SMListener daemon.

MATISSE_SMLISTENER_ADDR environment variable

You can use the MATISSE_SMLISTENER_ADDR environment variable to define
port number used by the Enterprise Manager to connect to the SMListener.

SMListener
Daemon Log
File

Each time you start a SMListener daemon, a log file is opened in the
MASTISSE_LOG directory. The name of the log file is mtsmlistener.log.

If a problem occurs, the SMListener daemon log file may contain a message.

Starting a
SMListener
Daemon

To start a SMListener daemon, use mt_smlistener as follows:

UNIX 1. Logon as root

Before starting the SMListener daemon, make sure that the MATISSE_CFG and
MATISSE_LOG environment variables are defined. In addition, since the
mt_smlistener is dynamically linked, it is necessary to update the dynamic
library path.

You will need to have the Java Runtime Environment installed on your
machine. You may run the which command to look for the location of the
JAVA_DIR directory. For instance:

% which java

/opt/tools/j2se/bin/java
Server Manager Listener 37

To define the environment variable from the bourne shell, you can set the
environment variable with the following command:

Solaris LD_LIBRARY_PATH=INSTALL_DIR/lib
JAVA_DIR/jre/lib/sparc/client\

export LD_LIBRARY_PATH

Linux LD_LIBRARY_PATH=INSTALL_DIR/lib
JAVA_DIR/jre/lib/i386/client\

export LD_LIBRARY_PATH

1. After defining or updating these environment variables, use the following
command to start the SMListener daemon:
root% mt_smlistener &

Windows 1. Logon with administrator privileges

2. Open a command window
Go to ‘bin’ under the Matisse installation directory. For
example,

> C:
> cd \Program Files\Matisse\bin

> mt_smlistener -install

> net start MATISSE_SML

The MATISSE SMListener service is starting.

The MATISSE SMListener service was started successfully.

3. Exit the command window

After typing these commands, the SMListener daemon is started and
enabled.You can now logoff from this account and logon with your regular
account in order to use Matisse.

Stopping the
SMListener
daemon

To stop the SMListener daemon, proceed as follows:

UNIX 1. Logon as root

2. Retrieve and kill the mt_smlistener process

Windows 1. Logon with administrator privileges

2. Open a command window
> net stop MATISSE_SML

The MATISSE SMListener service was stopped successfully.

> mt_smlistener -remove

MATISSE SMListener removed.
38 MATISSE Server Administration Guide

3. Exit the command window

After typing these commands, the SMListener service is stopped and
removed.You can now logoff from this account and logon with your regular
account in order to use Matisse.

4.6 Connections through Firewalls
In order to establish a connection to a SMListener daemon protected by a
firewall, you must open in the firewall the TCP port used by the Server Manager
Listener daemon.

To configure your database servers to accept remote TCP connections, update
your firewall settings as follows:

1. Open the TCP port used by the SMListener daemon. The default port
number is 7412.
Server Manager Listener 39

5 Matisse Access Control

This section describes how to set up access control, create users, and associate
privileges to users.

5.1 Introduction
Matisse Access Control provides user/password security for database
connections. Upon each connection, the server checks the validity of the user
name and password and authorizes the connection if it matches the user
description contained in the database system catalogs.

Different
Privileges

There are three different levels of privileges which can be associated to a
database user:

The administrator can perform administrative operations, i.e. adding new
users, and can read/write data and schema.

The standard user can read/write data and schema.

The read-only user can read data, but not modify it.

System User For a given user the user/password security mechanism can either rely on the
operating system access control, or use Matisse access control.

A “system user” is a user of the operating system who is identified by his login
name. The system user can access a secured database without specifying a user
name/password under the conditions which are described in the next section
“Managing Users”.

The notion of system user provides a convenient way to define the default
administrator when creating a new database, and to process batch commands
without the need to enter a password.

Enabling Access
Control

Access control specification is mandatory, so you have to specify a value for
the SECURITY parameter in the configuration file of your database. In order to
enable access control, you will have to set the value of SECURITY to 1 and then
restart the database.

CAUTION: Once access control has been enabled, on a database it is
impossible to disable it for this database.

When access control is not set, the values provided as user name and password
at connect time are ignored and all connections are accepted.
40 MATISSE Server Administration Guide

5.2 Managing Users

Operating
System Access
Control

We detail here the notion of “system user” mentioned in the introduction.

The operating system access control is based on the login mechanism. When
you connect to the database, Matisse looks for the database user name which
corresponds to your login. If this user name exists within this database, and
there is no password associated with it, Matisse trusts the system access
control, and you can connect to the database.

Only the system user is allowed to connect without password. All other users
must provide a non empty password when connecting.

The connection of a system user succeeds if the following conditions are
fulfilled:

1. The user name exists in the database.

2. The user name must not have any password associated in the database.

3. The host on which the user is logged must be in relation with the host on
which the database is running through a local area network (LAN), and
a. either the user management is centralized on you LAN (using NIS for

instance)
b. either the user has a system account on the host on which the database

server is running

Using Matisse
Access Control

If you have to connect from a host that is not on the LAN, or simply if you
prefer to use the Matisse access control, you just have to specify a password for
the users. In this circumstance, when you connect, you will have to specify both
the user name (which may be different from the login) and the password.

Add/Drop/
Modify Users

To manage users, you have to be an administrator. You can go through the
Users menu from the Matisse DBA Tool or the shell command mt_user.

When adding a user, you can specify one of the privileges:

ADM: to create an administrator

RW: to create a standard user who can read/write data objects and schema
objects

RDONLY: to create a read-only user

Create an
Administrator

As we just saw, an administrator can create another administrator with the same
commands than for creating any other user.
Matisse Access Control 41

The system user who did start/initialize the database is automatically declared
to the database as an administrator with his login name as user name. As a
consequence, any user on the system is a potential administrator of the database
who has:

READ privileges on the configuration file

WRITE privileges on the MATISSE_LOG directory and on the datafiles

EXEC privileges on the Matisse server (mts executable)

5.3 Database Connection API
The API for connecting to a database allow you to enter a user/password, and to
set several connection options. We provide here an example using the C API:

1. You allocate a MtConnection object:
MtConnection connection;

MtAllocateConnection(&connection);

2. You may set some options, in particular the data access mode. This
parameter can have the values: MT_DATA_DEFINITION which allows
schema modification, MT_DATA_MODIFICATION which allows data
modification, and MT_DATA_READONLY for read only access.

For instance, to access data in read only mode:

MtSetConnectionOption(connection,
MT_DATA_ACCESS_MODE,
MT_DATA_READONLY);

The access mode should always be less or equal the level of permission
defined for the user. For instance, a user with read only permission will not
be able to connect with the MT_DATA_MODIFICATION option.

3. To connect, you use the MtConnectDatabase function. If the Matisse
access control is not enforced you may specify NULL for both user name and
password parameters:
MtConnectDatabase(connection, host, database,

NULL, NULL);

Otherwise, you will provide a non-null value for both user name and
password:

MtConnectDatabase(connection, host, database,
myusername, mypassword);

4. After disconnecting, you can deallocate the connection object:
MtDisconnectDatabase(connection);

MtFreeConnection(&connection);
42 MATISSE Server Administration Guide

6 Configuring a Database

A configuration file is associated to every Matisse database. This file is created
by the Enterprise Manager when you create a new database, you may also edit
it by hand if needed. Some parameters are used only when initializing or re-
initializing a database, some require a database shutdown-restart.

6.1 Configuration File
The configuration file of a database defines the database parameters. You can
use this file to:

Update the values of the parameters

Define the location and size of the datafiles upon initialization.

The Enterprise Manager process needs to be granted sufficient privileges on
this file to be able to read and modify it.

File Syntax The first line of the configuration file defines the database name. Note that this
should be the same as the name of the configuration file without the .cfg
suffix.

After the name are the parameters and their values. There is one parameter per
line:

parameter_name:value

After the parameter definitions, the configuration file lists the datafile
descriptions, with the following syntax:

datafile_path size [[, datafile_path size] ...]

Or, for mirrored datafiles:

datafile_path | mirror_datafile_path size [, ...]

6.2 Configuration Parameters
The database configuration file is provided so that you can define an initial
setup for your database. It contains a list of database parameters that must be
defined before a user can access the database. Other parameters are optional.
By specifying values for these parameters you can improve the overall
performance of Matisse.

Some of these values can be modified at any time by the current user, while
other values require you to restart or reinitialize the database.
Configuring a Database 43

Mandatory
Parameters

For each database configuration file, you must provide values for:

NAME

SECURITY

PATH

NAME defines the name of the database. SECURITY indicates whether access
control is enabled or not. PATH defines the datafiles that contain the data. Each
database must have at least one datafile of 400 data-pages.

Default Values When you create a database by using the DBA Tool, the parameters are
displayed with the default values as listed in Table 6.1.

Table 6.1 Default Values of Configuration Parameters

Parameter Default Value

NAME blank

PAGESIZ 8

CACHESIZ 64M

SECURITY 0

AUTOEXTEND 1

DATEXTENDSIZ 10

AUTOCOLLECT 1

AUTOCOLLECTFREQ 43

OBJTABLESIZ 0

OBJTABCLRFREQ 34

AUTORESTART 0

DATFULLINIT 0

DATINITSIZ 20

DATINMEMORY 0

MEMORYTRANS 0

MAXSQLDOP 0

MAXSQLTHRDPOOL 0

MAXSRVLOGFILES 7

MAXBKPLOGFILES 7

TCPKEEPALIVE 0

PORTS 0-0

PATH blank
44 MATISSE Server Administration Guide

Automatically
Updated
Parameters

The parameter PATH is updated automatically when adding, removing or
resizing datafiles with the Enterprise Manager or the shell level administration
commands. Upon establishing server-side replication, the REPLICA and
REPLICATES parameters are automatically added. These replication parameters
are not part of the initial configuration for creating your database.

CAUTION: Once the database is initialized, do not update these
automatic fields by hand.

NAME

Purpose This parameter defines the name of the database for which the configuration
file was created.

Server Use The server uses NAME at initialization and restart.

Type NAME is a character string.

PAGESIZ

Purpose In a Matisse database, all data is stored in basic units that are called datapages.
A datapage is the minimum amount of data that can be read from or written to
disk by the Matisse server in any single I/O operation.

The parameter PAGESIZ specifies the size of a Matisse datapage in kilobytes.
The parameter range is 8 to 63.

The value of PAGESIZ has some influence on the amount of bytes read or
written for each I/O.

When setting PAGESIZ for a database, you must take into account the amount
of data that is regularly modified on it.

If the quantity of data modified by a transaction is relatively small—that is to
say, if the transactions read, write, or modify a relatively small amount of
data—a PAGESIZ somewhat larger than the average amount of data is
appropriate. A value that is compatible with the average amount of data to be
modified will also help reduce the number of I/O operations required to access
the data.

Selecting a datapage size somewhat larger than the object size will also
optimize disk space use.

The datapage is also used for internal structures (for example, index, btrees).
Configuring a Database 45

Server Use The server uses the PAGESIZ parameter at initialization.

Type The PAGESIZ parameter is of type integer.

Default Value The default value of the PAGESIZ parameter is 8 kB.

CACHESIZ

Purpose CACHESIZ is the size, expressed in datapages, of the server cache dedicated to
the database and located in system memory. The server cache contains the
database datapages which have been most recently used.

This parameter has a direct influence on system performance. If the size of
CACHESIZ is too close or even larger than the available system memory, the
cache can be swapped to disk and thereby reduce system performance.

This parameter can be in one of the following units:

Kilobytes

Megabytes

Gigabytes

Datapages

The value for this parameter is a number followed with an uppercase or
lowercase K, M, or G for kilobytes, megabytes, or gigabytes. If you do not
specify one of these units, the DBA will interpret the value as a number of
datapages.

The minimum value of CACHESIZ is 1250 datapages. The maximum size is 1.4
gigabytes, except with the 64-bit version of Matisse, which is limited only by
available memory.

Server Use The server uses the CACHESIZ parameter at initialization and restart.

Type The CACHESIZ parameter is of type integer.

Default Value The default value of the CACHESIZ parameter is 1250 datapages.

SECURITY

Purpose Setting a value of 1 for SECURITY will enforce access control security for the
database. Once this parameter is set, only the operating system user who started
the database can access it. This user must create explicitly new users through
the Enterprise Manager or the mt_user command to allow other users to
connect to the database.
46 MATISSE Server Administration Guide

Server Use The server uses the SECURITY parameter at initialization and restart. Once this
parameter has been set to 1, access control cannot be turned off without
reinitializing the database.

Type The SECURITY parameter is of type integer.

Default Value The SECURITY parameter has a no default value, it must be explicitly specified.

AUTOEXTEND

Purpose When this parameter value is set to 1, when a datafile is full the Matisse Server
automatically extends it to make room for more objects. When it is set to 0,
datafiles must be extended manually using the Enterprise Manager or the
mt_file command.

The setting of this parameter has no effect on disk partition (raw device)
datafiles.

Type The AUTOEXTEND parameter is of type integer.

Default Value The default value of the AUTOEXTEND parameter is 1.

DATEXTENDSIZ

Purpose DATEXTENDSZ is the minimum datafile extension size used when the datafile is
full.

This parameter is expressed in Megabytes.

The minimum value of DATEXTENDSZ is 4 Megabytes. The maximum size is
128 Megabytes.

Server Use The server uses the DATEXTENDSZ parameter at initialization and restart.

Type The DATEXTENDSZ parameter is of type integer.

Default Value The default value of the DATEXTENDSZ parameter is 10.

AUTOCOLLECT

Purpose When this parameter value is set to 1, the Matisse Server performs the
automatic collection of obsolete versions in order to reclaim disk space. When
it is set to 0, no automatic collection is performed.
Configuring a Database 47

In both cases, you can also run manual collects with the mt_server collect
command.

When it is set, the automatic collection is triggered automatically in two cases:

When a datafile becomes full, in order to reclaim disk space.

When many new versions have been created in the database. The collection
of versions occurs regularly for write intensive applications.

This feature prevents the database from growing when large amounts of updates
are performed on existing objects, and reduces the need to run manual version
collects.

Server Use The server uses the AUTOCOLLECT parameter at initialization and restart.

Type The AUTOCOLLECT parameter is of type integer.

Default Value The default value of the AUTOCOLLECT parameter is 1.

AUTOCOLLECTFREQ

Purpose This parameter defines the run frequency of the automatic version collection
operation. This parameter is expressed in seconds. The minimum value is 5
seconds, the maximum size is 360 seconds.

Type The AUTOCOLLECTFREQ parameter is of type integer.

Default Value The default value of the AUTOCOLLECTFREQ parameter is 43.

OBJTABLESIZ

Purpose This parameter defines the maximum size of the multi-version object table
memory cache. The pages in the object table cache are only allocated when
required. This parameter is expressed megabytes (M suffix), gigabytes (G
suffix). Specifying a value of 0 disables the control of the maximum size.

Type The OBJTABLESIZ parameter is of type integer.

Default Value The default value of the OBJTABLESIZ parameter is 0.
48 MATISSE Server Administration Guide

OBJTABCLRFREQ

Purpose This parameter defines the run frequency of the object table clearing operation.
This parameter is expressed in seconds. The minimum value is 3 seconds, the
maximum size is 120 seconds.

Type The OBJTABCLRFREQ parameter is of type integer.

Default Value The default value of the OBJTABCLRFREQ parameter is 34.

AUTORESTART

Purpose This parameter defines the automatic restart of a database when the machine is
rebooted. When this parameter value is set to 1, the Matisse Server Manager
Listener (SMListener) restarts the database server automatically after a reboot
of the machine. When it is set to 0, no action is performed.

Type The AUTORESTART parameter is of type integer.

Default Value The default value of the AUTORESTART parameter is 0.

DATFULLINIT

Purpose When this parameter value is set to 1, the Matisse Server performs the full
datafile initialization before becoming online. When it is set to 0, the Matisse
Server is online as soon as the minimum datafile size (DATINITSIZ) is
initialized.

Server Use The server uses the DATFULLINIT parameter at initialization.

Type The DATFULLINIT parameter is of type integer.

Default Value The default value of the DATFULLINIT parameter is 0.

DATINITSIZ

Purpose DATINITSIZ is the minimum datafile size to be initialized before the server is
online. This parameter has no effect when DATFULLINIT is set to 1.

This parameter is expressed in Megabytes.

The minimum value of DATINITSIZ is 20 Megabytes. The maximum size is
256 Megabytes.
Configuring a Database 49

Server Use The server uses the DATINITSIZ parameter at initialization.

DATINMEMORY

Purpose DATINMEMORY defines the primary location of the datafiles. Specifying a value
of 1 enables an in-memory database. The datafiles are in-memory. When it is
set to 0, the datafiles are located on disks.

Server Use The server uses the DATINMEMORY parameter at initialization.

Type The DATINMEMORY parameter is of type integer.

Default Value The default value of the DATINMEMORY parameter is 0.

MEMORYTRANS

Purpose When this parameter value is set to 1, the shared memory transport is enabled.
See the discussion of MT_MEMORY_TRANSPORT in the Matisse C API Reference
or one of the other API or binding references for further discussion.

Server Use The server uses the MEMORYTRANS parameter at initialization and restart.

Type The MEMORYTRANS parameter is of type integer.

Default Value The default value of the MEMORYTRANS parameter is 1.

MAXSQLDOP

Purpose MAXSQLDOP defines the maximum degree of parallelism which determines the
maximum number of threads that are being used.

Specifying a value of 0 disables parallel processing.

The maximum value of MAXSQLDOP is the number of logical CPUs on the
server.

Server Use The server uses the MAXSQLDOP parameter at initialization and restart.

Type The MAXSQLDOP parameter is of type integer.

Default Value The default value of the MAXSQLDOP parameter is 0.
50 MATISSE Server Administration Guide

MAXSQLTHRDPOOL

Purpose MAXSQLTHRDPOOL defines the maximum number of threads in the pool of
threads dedicated to parallel processing of SQL queries

Specifying a value of 0 disables parallel processing.

The maximum value of MAXSQLTHRDPOOL is twice the number of logical CPUs
on the server.

Server Use The server uses the MAXSQLTHRDPOOL parameter at initialization and restart.

Type The MAXSQLTHRDPOOL parameter is of type integer.

Default Value The default value of the MAXSQLTHRDPOOL parameter is 0.

MAXSRVLOGFILES

Purpose MAXSRVLOGFILES represents the maximum version number of recycled server
log files of the Matisse Server saved.

The minimum value of MAXSRVLOGFILES is 1. The maximum value is 32.

Server Use The server uses the MAXSRVLOGFILES parameter at initialization and restart.

Type The MAXSRVLOGFILES parameter is of type integer.

Default Value The default value of the MAXSRVLOGFILES parameter is 7.

MAXBKPLOGFILES

Purpose MAXBKPLOGFILES represents the maximum version number of recycled backup
log files of the Matisse Server saved.

The minimum value of MAXBKPLOGFILES is 1. The maximum value is 32.

Server Use The server uses the MAXBKPLOGFILES parameter at initialization and restart.

Type The MAXBKPLOGFILES parameter is of type integer.

Default Value The default value of the MAXBKPLOGFILES parameter is 7.
Configuring a Database 51

TCPKEEPALIVE

Purpose TCPKEEPALIVE defines the keepalive control of the server TCP/IP
connections. When enabled, it verifies on a regular basis that the endpoint at the
remote end of the connection is still available. OS-specific value of the
keepalive intervals are controllable at the system level. Specifying a value of 1
enables keepalive control. Specifying a value of 0 disables keepalive control.

On Windows, the default settings when a TCP socket is initialized sets the
keep-alive time-out to 2 hours and the keep-alive interval to 1 second. The
default system-wide value of the keep-alive time-out is controllable through the
KeepAliveTime registry setting which takes a value in milliseconds. The
default system-wide value of the keep-alive interval is controllable through the
KeepAliveInterval registry setting which takes a value in milliseconds. The
number of keep-alive probes (data retransmissions) is set to 10 and cannot be
changed.

On Linux, the default settings when a TCP socket is initialized sets the keep-
alive time-out to 2 hours and the keep-alive interval to 75 second. The number
of keep-alive probes (data retransmissions) is set to 9. The default system-wide
value of the keep-alive parameters is controllable through the following files:
/proc/sys/net/ipv4/tcp_keepalive_intvl

/proc/sys/net/ipv4/tcp_keepalive_probes
/proc/sys/net/ipv4/tcp_keepalive_time

Server Use The server uses the TCPKEEPALIVE parameter at initialization and restart.

Type The TCPKEEPALIVE parameter is of type integer.

Default Value The default value of the TCPKEEPALIVE parameter is 0.

PORTS

Purpose This parameter is used to specify a port number or a range of port numbers for
client-server connections. When this parameter is not specified, Matisse selects
the first port number available in the system.

If you need to specify a single port number, simply put the number. If you need
to specify a range of port numbers, put the start-number, a hyphen, and the end-
number, e.g.,

PORTS: 7422-7431

The PORTS numbers should not include the port number used by the Matisse
port monitor, which is 7421 by default.

PORTS is available on the Windows platforms and on Linux.
52 MATISSE Server Administration Guide

Server Use The server uses the PORTS parameter when establishing a connection to a
client.

Type The PORTS parameter is of type integer.

Default Value There is no default value for this parameter.

PATH

Purpose PATH specifies the location of one or more datafiles to be created automatically
by Matisse when it initializes the database. A datafile is a quantity of disk space
reserved for your database. With Matisse, all data is stored in datafiles.

At least one datafile path must be declared in the database configuration file. If
more than one is declared, it is recommended that all the datafiles be declared
with the same size. To benefit fully from certain Matisse features, such as load
balancing, a database should have datafiles of equal size.

For each datafile, indicate the path where it is located and its size expressed in
kilobytes (K), megabytes (M), or gigabytes (G). If you do not specify one of
these units, kilobytes is used as the default. A datafile must be greater than 400
datapages (400 x PAGESIZ) and may not exceed 64 million datapages.

There can be more than one datafile per line in the configuration file if they are
separated by commas, as in the following example:

/path1 10000, /path2 10000

Up to 31 datafiles may be specified. Note that since a unit was not specified in
the above example, each datafile will be 10,000 kilobytes.

For increased reliability, you may mirror your datafiles. To do so, specify two
paths separated by the vertical bar symbol. For example, to mirror two
unformatted partitions (raw devices):

/dev/rdisk/c1t3d0s1 | /dev/rdisk/c2t3d0s1 2G

Up to 31 mirrored pairs may be specified.

CAUTION: In a production environment, we strongly recommend that
you specify only one datafile per physical disk.

Server Use The server uses the PATH parameter at initialization.

Type The PATH parameter must be defined for one or more datafiles. Each datafile is
defined by a pathname and a size.
Configuring a Database 53

6.3 Using Disk Partitions as Datafiles

Why Use
Partitions?

By using disk partitions, also called raw devices, you eliminate the risk of a file
system corruption and can improve the speed of the read and write disk access
of a database.

You can initialize a partition that is not used by the operating system and
allocate a partition to Matisse either with the DBA Tool or at the command line
using mt_partition init and mt_partition alloc.

Before declaring a partition in the configuration file, the partition must not:

Contain the first sector of the disk because the first sector contains the disk
label and must not be corrupted

Contain the whole disk

Have a file system

Be a swap partition

Choose the partition that you want to use with care. The partition should not
already be in use by a different software application or by an operating system
utility.

Check for
Partitions That
Contain the First
Sector on UNIX

To find the names of the available disks, you may use the format command.
You need to be a superuser to use this command.

To see if a partition contains the first sector of a disk, use the dkinfo
command. This command is an operating system command that displays
information on the disk.

For example, if you want to list the partitions on the disk sd1, type the
following command:

dkinfo sd1

The type of information returned is as follows:

sd1: SCSI CCS controller at addr f0800000, unit # 8

2073 cylinders 21 heads 94 sectors/track

a: 98700 sectors (50 cyls)

 starting cylinder 0

b: 3849300 sectors (1950 cyls)

starting cylinder 1950

c: 4092102 sectors (2073 cyls)

 starting cylinder 0

d: 144102 sectors (73 cyls)

 starting cylinder 2000

e: No such device or address
54 MATISSE Server Administration Guide

f: No such device or address

g: No such device or address

h: No such device or address

For each disk partition, the size and the starting cylinder are displayed. Partition
a on disk sd1 for example, has a starting cylinder of 0. This means that
partition a contains the first sector of the disk sd1. This partition does not meet
condition a described above. You cannot, therefore, declare the partition a on
sd1 for use by Matisse.

Partition d on disk sd1 on the other hand, has a starting cylinder of 2000. It
does not contain the first sector of the disk. This partition and partition b with a
starting cylinder of 1950 meet the conditions a and b described above.

Partition sd1c contains the entire disk and therefore contains the first sector of
the disk. This partition cannot be used by a Matisse database.

Checking
Partitions with
File Systems on
UNIX

You must also verify that a partition does not have a file system. To do this type
the following operating system command:

mount

The host displays information on the partitions that have a file system. For
example, on a SunOS host the following partitions may be listed:

/dev/sd1a on / type 4.2 (rw)

/dev/sd1b on /usr type 4.2 (rw)

/dev/sd1g on /mima_free type 4.2 (rw)

On a Solaris host, the following partitions may be listed:

/ on /dev/dsk/c0t3d0s0 read/write/setuid on Thu Apr 7
18:17:49 1998

/usr on /dev/dsk/c0t3d0s6 read/write/setuid on Thu Apr 7
18:17:49 1998

The above display indicates that the partitions have a file system and cannot be
used by a Matisse database.

Checking for
Swap Partitions
on UNIX

You must also verify that a partition is not a swap partition. Consult with your
system administrator if you do not know if a partition is a swap partition.

Declaring a
Partition in a
Configuration
File

You can define a disk partition that you want to use in the database
configuration file directly when you create a database. You can also add a
partition at any time to an online database by using the mt_file command.
Configuring a Database 55

Note that in UNIX, the same physical partition on a disk can have two different
names, depending on the mode in which it is accessed. In Solaris, a partition
named /dev/dsk/c0t1d0s2 is referenced as /dev/rdsk/c0t1d0s2 when
accessed in raw device mode.

Matisse accesses partitions in raw mode, but lets you specify a partition with
the name used outside raw mode. However, to remind you that Matisse uses the
partitions in raw device mode, all the DBA Tool dialogs dealing with partitions
specify them in raw mode.

MS Windows On MS Windows, you can manage disk partition by selecting the Disk
Administrator Tool. A partition name E can be referenced as \\.\E: when
accessed in raw device mode.

If you define a partition for use before initializing a database, you need to list it
in the configuration file as you would any other datafile.

Linux On Linux, you can setup a disk partition as on the following example, assuming
that the partition /dev/sdb2 is available. Note that on Linux you need to
define a symbolic link which ends with the physical name of the partition, as is
shown here:

[root]# raw /dev/raw/raw1 /dev/sdb2

[root]# ln -s /dev/raw/raw1 /dev/raw/sdb2

[root]# mt_partition init -f /dev/raw/sdb2

Then you can declare it in your database configuration file:

PATH: /dev/raw/sdb2 2221856K

The user starting the Matisse server needs to have the read-write permission on
the devices, e.g., /dev/raw/raw1 and /dev/sdb2.

The raw devices need to be listed in the file /etc/sysconfig/rawdevices to
define a set of raw device mappings automatically created during the system
startup, for example:

/dev/raw/raw1 /dev/sdb2
56 MATISSE Server Administration Guide

7 Using the Enterprise Manager

This section shows you how to use the Matisse Enterprise Manager to create
and manage your database servers.

The Enterprise Manager regroup in a single tool: the distributed
management of database servers, the management of database schemas,
the data import and export in table (relational) and XML formats, as well
as various security and administration functions. It includes an Object
Viewer to browse and edit object hierarchies stored in a database. It also
includes a SQL analyzer tool to help optimize complex queries and
produce data result-sets in a table format.

7.1 Starting the Enterprise Manager
Before starting the Enterprise Manager, make sure that the MATISSE_CFG and
MATISSE_LOG environment variables are defined. In addition, since the
Enterprise Manager is dynamically linked, it is necessary to update the dynamic
library path.

You will need to have the Java Runtime Environment installed on your
machine. You may run the which command to look for the location of the
JAVA_DIR directory. For instance:

% which java

/opt/tools/j2se/bin/java

To define the environment variable from the bourne shell, you can set the
environment variable with the following command:

Solaris LD_LIBRARY_PATH=INSTALL_DIR/lib
JAVA_DIR/jre/lib/sparc/client\

export LD_LIBRARY_PATH

Linux LD_LIBRARY_PATH=INSTALL_DIR/lib
JAVA_DIR/jre/lib/i386/client\

export LD_LIBRARY_PATH

After defining or updating these environment variables, use the following
command to start the Enterprise Manager:

mt_emgr
Using the Enterprise Manager 57

7.2 Remote Administration
The Enterprise Manager provides full remote administration features for
distributed Matisse database servers on a local network. All administration
tasks can be executed remotely via the enterprise manager. This includes
database start and shutdown, database backup and restore, server
monitoring, database monitoring, database access control and database
schema and data manipulation.

7.3 Creating a Database
The creation of a database involves the following steps:

Create a configuration file

Specify the datafile(s) in the configuration file

Initialize the database

To perform these tasks with the Enterprise Manager, right click on the node that
represents your host machine, then select New Database.

Figure 7.1 Create Database

You must then enter a name for the database. Note that the database name
should not exceed twelve characters. The other tabs in the Create New Database
window allow you to modify the description of the datafiles, or change some
configuration options.

After creating your database, you can start it with a right click on the database
node, then select Start. The first start will take more time as it initializes the
datafiles.
58 MATISSE Server Administration Guide

7.4 Stopping a Database
Before stopping a database, you must verify that there are no users connected
on it. After the database has been stopped, it becomes off-line. Users are no
longer able to access the data. When the database is off-line, the root or owner
account can modify the database configuration file.

To stop a database from the Enterprise Manager, right click on the database
node and then select Stop.

Figure 7.2 Stop Database

7.5 Monitoring Database Server
The Enterprise Manager monitors registered database servers reporting in
real-time when servers, databases or any other Matisse services are down.
Using the Enterprise Manager 59

Figure 7.3 Database servers state monitoring

It also includes real-time monitoring of CPU activity, memory
consumption and disk usage of database servers.

Figure 7.4 Servers activity and resources monitoring
60 MATISSE Server Administration Guide

7.6 Managing Database Server Operation Control
The Server Operation Control Manager tool provides security control for
executing local or remote administration operations including start/stop
databases, backup/restore and datafile management.

Figure 7.5 Server Operation Control Manager

7.7 Managing Database Users
The Matisse access control feature can be enforced in a database by setting to 1
the SECURITY parameter in the configuration file. Once access control is
enforced all clients must provide a valid user and password to be able to
connect to the database server.

You can manage users only when the database is on-line. By clicking on the
Users node under Security, you can perform the following operations:

Add a user

Drop a user
Using the Enterprise Manager 61

Update user password and/or privilege

Figure 7.6 Adding a user

Alternatively, you can perform these tasks using the equivalent shell commands
discussed in section 9, Administration Commands.

7.8 Managing Datafiles
Once your database has been created, you can manage datafiles only when the
database is on-line. Under your database node, open Management, then click on
Datafiles node, from the General tab you can:

Add a primary datafile or a mirror datafile to the database

Delete a datafile

Increase the size of a datafile
62 MATISSE Server Administration Guide

For instance to create a mirror datafile to an existing primary datafile, you will
just re-enter the path for the primary datafile, then the path for the new mirror
datafile. The size should be identical to the primary datafile size.

Figure 7.7 Creating a mirror datafile

Alternatively, you can perform the same tasks using the equivalent shell
commands discussed in section 9, Administration Commands.

To take advantage of Matisse automatic load balancing and for optimal
performance, all datafiles should be the same size, all disks should be the same
type, and should use the same type of controller.
Using the Enterprise Manager 63

7.9 Managing Backups
Matisse Database Backup tool allows users to perform full and
incremental parallel backups of databases while the system in online.
There is no need to block updates during a backup, as the Matisse server
keeps a snapshot of the database at the time of the beginning of the
backup operation.
64 MATISSE Server Administration Guide

Figure 7.8 Database Backup Manager
Using the Enterprise Manager 65

7.10 Managing Open Connections
You can see the open connections from the Connections sub-node of an online
database. You can also kill a connection. For this, display the connections and
right click on an element to display the menu.

Figure 7.9 Killing an active connection

CAUTION: When a connection is killed, the active transaction if any is
aborted, all the operations (read, write, create, delete)
carried out by the transaction are cancelled.

7.11 Managing Active Transactions
You can see the active transactions from the Transactions sub-node of an online
database. You can also abort a transaction from the Transactions window. For
this, display the transactions and right click on an element to display the menu.
66 MATISSE Server Administration Guide

Figure 7.10 Aborting a transaction from the Monitor window

CAUTION: When a transaction is aborted, all the operations (read,
write, create, delete) carried out by the transaction are
cancelled.

7.12 Monitoring a Database
You can see database snapshots from the Monitor window of the Enterprise
Manager. Click on refresh to update the current snapshot.

You can also kill a connection or abort a transaction from the Monitor window.
For this, display the connections or transaction and right click on an element to
display the menu.
Using the Enterprise Manager 67

Figure 7.11 Matisse Monitoring:

Matisse Monitor presents detailed information on the currently selected
database. It provides information on the connections to the database,
transactions performed on the database, and datafile activity.

Summary information about connections, as described in the following table,
appears at the top of the Overview and Connection tabs.

Table 7.1 Summary Information about All Connections

Field Contents

Committed Number of transactions that have committed since the database was started (or restarted)

Read Locked Number of objects currently being locked.

Aborted Number of transactions aborted since the database was started (or restarted)

Blocked Number of transactions currently blocked.

Open Number of open connections

Deadlocks Number of deadlocks since the database was started (or restarted).
68 MATISSE Server Administration Guide

Detailed information about connections, as described in the following table,
follows the summary on both the Overview and Connection fields.

The number of possible client-server connections depends directly on the
number of file descriptors allowed by the server process. Under UNIX, a file
descriptor is opened each time that a datafile or a log file is opened. In addition,
file descriptors are opened for other reasons unrelated to datafiles and log files.

UNIX By default, 256 is the maximum number of file descriptors for any process. The
total number of possible connections to any database at any time is therefore
256 less the number of connections already opened. If the number of database
connections reaches 256, and you anticipate an even greater number of
connections, you can increase the number of file descriptors. Use the limit C-
shell command to set the number of file descriptors for the process. Consult the
appropriate operating system manual for further information.

Information about datafiles, as described in the following table, follows the
connection information on the Overview tab. It can also viewed separately on
the Datafiles tab.

Table 7.2 Detailed Information about Specific Connections

Field Contents

HostName Name of the server host

UserID Name of the server host

ProcessID ID of the user connected to the database

Calls ID of the process connected to the database

TranID ID of the transaction that blocks the transaction listed under Blocked. Note that either
both the Tran ID and Blocked fields are filled or neither are filled.

Blocked ID of a transaction that is blocked. Note that either both the Tran ID and Blocked fields
are filled or neither are filled.

Function Function calling the server when the monitor checks the database connections

Table 7.3 Information about Datafiles

Field Contents

ID ID of the datafile. Each datafile has a unique ID assigned by the server.

Path Pathname defined for the datafile

Status Status of the datafile—on-line or off-line

VC Whether a Collect Versions operation is currently taking place. During a Collect
Versions, an asterisk (*) appears under this field.

Size Size in datapages of the datafile

Used Number of datapages where data is stored in the datafile
Using the Enterprise Manager 69

Database configuration information, as described in the following table, appears
at the bottom of the Overview tab.

Information about transactions, as described in the following table, appears on
the Transactions tab.

Read Number of datapages read between two refresh intervals

Write Number of datapages written between two refresh intervals

Pos Position of the last datapage accessed

Table 7.3 Information about Datafiles

Field Contents

Table 7.4 Configuration Information

Field Contents

Page Size Size, in kilobytes, of the database datapages.

Total Pages Total number of datapages in the database.

Used Pages Number of datapages in the datafiles that are currently used to store data

Single ver Number of objects that have only one version

Multiple ver Number of objects that have multiple versions (may be collectible)

Cur Version Current logical time

Cache Mem Size, in kilobytes, of the memory allocated for the data page cache

ObjTab Mem Size, in kilobytes, of the memory allocated for the object table

High Water Greatest position of datapages used at any time prior to the current logical time. (Similar
to the debris left behind when a river overflows its banks and called the high water mark.)

Table 7.5 Information about Transactions

Field Contents

TM Disable Indicates if the transaction manager is disabled. A “1” means it is disabled.

Next Time Next logical time of the database.

Commit Tran ID of the last transaction that committed

Active Number of transactions that are currently active, that is, open

Blocked Number of transactions that are currently blocked

Start Number of transactions begun since the database was started

Commit Number of transactions committed since the database was started

Abort Number of transactions aborted since the database was started
70 MATISSE Server Administration Guide

Changing the
Refresh Interval

Click the Refresh Interval pull-down menu to change the number of seconds
between updates. The default interval is three seconds.

Figure 7.12 Refresh interval choice

Taking an
Activity
Snapshot

To stop automatic refreshing, click on the Freeze button in the menu-bar.

Figure 7.13 Freeze button from the monitoring menu-bar

You may then resume the automatic refreshing by clicking the Unfreeze button.

Figure 7.14 Unfreeze button from the monitoring menu-bar
Using the Enterprise Manager 71

7.13 Restoring a database
Matisse Database Restore tool provides wizards to guide administrators
through the restore process. When restoring, you must first preinitialize
your database, then you can start the restore process. For restoring from a
multi-increment backup, you can restore the full backup files and the
incremental backup files in any order, either sequentially or in parallel,
and then shutdown and restart the database will complete the process.

Figure 7.15 Database restore wizard
72 MATISSE Server Administration Guide

7.14 Scheduling tasks
Matisse Database Task Scheduler provides wizards to guide administrators
through the task automation process. The Task Scheduler lets you
automate tasks that run on regular or predictable cycles.

By using the task scheduler, you can determine when, and in what order,
administrative tasks will occur. You can schedule tasks, such as version
collection, backups, log file recycling, user-defined script execution or
database checkpoints on in-memory databases. You can also specify the
order in which tasks run by creating a multi-steps job. Each task is
scheduled to run at desired times and frequency.
Using the Enterprise Manager 73

Figure 7.16 Database Task Scheduler
74 MATISSE Server Administration Guide

Executing a
User-defined
Script

You can schedule the execution of a user-defined script located in the
scripts/task directory in MATISSE_HOME. The database name is the
script only parameter. The script returns 0 to indicate a successful
completion while any other number reports an error. The return status as
well as the output produced by the execution of the script is logged in
the mtsmlistener.log file located in MATISSE_LOG.

NOTE: The task does not return until the script execution is completed.

The following scripts show how to export the database in an XML file
using the mt_xml utility.

Unix $ cat mt_runtask.sh

#!/bin/sh

#

scheduled task script

#

usage: mt_runtask <database>

#

DBNAME=${1}

mt_xml -d $DBNAME export -f
$MATISSE_HOME/data/XML/$DBNAME_monthly.xml --full

STS=$?

exit $STS

Windows $ cat mt_runtask.bat

@echo off

REM

REM scheduled task script

REM

REM usage: mt_runtask <database>

REM

set DBNAME=%1

mt_xml -d %DBNAME% export -f
C:\Products\Matisse\data\XML\%DBNAME%_monthly.xml --full

exit /b %errorlevel%
Using the Enterprise Manager 75

76 MATISSE Server Administration Guide

8 Collecting the Versions of a
Database

A version collection removes the object versions that are not part of a database
version. The disk space used to store these object versions will then be
available for other, newer object versions. You can run a version collection on a
database only when it is on-line.

How the Collect
Versions
Mechanism
Works

The Matisse versioning architecture uses copy semantics which provide several
features such as non-blocking data access to the current version while there are
concurrent updating transactions.

The strategy of copy semantics leads to the accumulation of object versions that
may no longer be useful. The collect versions mechanism is designed to remove
(or “collect”) obsolete object versions.

To prevent the object versions at a given time from being collected, you must
declare a version. When you start a collect versions on a database, all the object
versions that are not current and are not associated with a version are collected.

Automatic
Version
Collection

By default the automatic collection is set in your database configuration file. It
is triggered upon some database update threshold or when some datafiles
become near full. In addition, you may run version collection manually at any
time with the mt_server collect command, for instance to compact the data
before running a backup.

Kinds of Version
Collections

As mentioned earlier, the collect versions mechanism removes object versions
from the database. Various levels enable you to remove:

Unreferenced transaction objects (level 2)

Deleted objects without versions (level 1 and level 2)

Table 8.1 summarizes the principal differences between the three levels of
version collections.

Table 8.1 Collect Levels

Level Purpose

0 Collect obsolete object versions. (Default)

1 Collect obsolete object versions and deleted objects without older versions.

2 Collect obsolete object versions, deleted objects and transaction objects.
Collecting the Versions of a Database 77

Collecting Deleted
Objects Without
Older Versions

When you delete an object, a deleted object version is written in the database as
a marker indicating that the object has been deleted. While no further operation
can be performed on this object, previous versions of it may exist in different
versions.

A level 1 or higher version collection will collect any deleted object whose
previous versions have already been removed.

Note that a level 2 version collection takes longer than a level 0 version
collection.

Collecting Unused
Transaction Objects

You can use a level 2 version collection to collect unused transaction objects
from a database. A transaction object is an object written to the database when
a transaction commits.

To determine how frequently you should run a level 2 version collection, you
can look at the database log file after running one. Depending on the amount of
disk space recovered, it may be best to run a level 2 version collection once a
day, once a week, once a month or not at all. It depends on your application.

Data Compaction After collecting datapages, the collect versions mechanism compacts the valid
data from the collected datapages into a minimal number of datapages.

Scheduled
Collection on
MS Windows

To schedule a collect version on MS Windows, the collect version operation can
be scheduled using the at command.

For example, to run a collect level 2, each weekday at 11:00 PM, type the
following command in a command prompt window:

at 23:00 /every:M,T,W,Th,F c:\matisse\mt_server -d
database@host collect -l 2

NOTE: Schedule service enables the at command. You may check that
Schedule service is started using Services tool from the Control
Panel.

Version
Collection Log
File

During a version collection, messages indicating the operations performed by
the collect version are written to the log file. To find out what exactly happened
during the version collection, you can read the log file. To do this, use the
following procedure:

Start the DBA Tool and then start the version collection.

Open the Files Menu.

Select the Log File option. If you start a level 0 version collection on a
database that contains two datafiles, for example, the log file of the collect
version is likely to contain messages of the following kind:
15-MAR 17:48:32 Beginning version collection on file 1
78 MATISSE Server Administration Guide

15-MAR 17:48:32 Logical time 3 uncollectible

15-MAR 17:48:33 Completed version collection for file 1

15-MAR 17:48:33 6 pages, 4 versions, 2228 bytes collected

The first message indicates that a version collection has begun on file 1. The
message, Logical time 3 uncollectible, means that all object versions
that are current at logical time 3 will be saved from version collection.
Collecting the Versions of a Database 79

9 Administration Commands

Scriptable command-line alternatives and supplements to the DBA Tool are
provided by the following commands:

mt_backup

mt_connection

mt_file

mt_partition

mt_replicate

mt_server

mt_transaction

mt_user

mt_version

You may view help for each of these commands by entering it without
arguments. For example, entering mt_file will display the following:

Usage: mt_file -d [user:]dbname[@host[:port]] <command> ...

Possible commands:

 extend Extend file capacity

 add Add a new file

 list List file informations

 remove Remove a file

You may see additional help for the possible commands listed by using the
syntax command option -h. For example, the command mt_file extend -
h will display the following:

Usage: mt_file [OPTIONS] extend -f <file> -s <size>[gmk]
[-h]

 -f, --file=... File location

 -s, --size=... File Size

 -h, --help display this help and exit

We introduce in this section how to use these commands, except for
mt_backup and mt_replicate which are described in section 12, Database
Backup and Restore and section 10, Database Transactional Replication.
80 MATISSE Server Administration Guide

Database
Shutdown
Restart

Once you have edited a valid configuration file mydb.cfg in the config
directory of your matisse installation, you can initialize your database with the
following command:

mt_server -d mydb initialize

This will initialize and start the database, creating the data files with the path
and the size that you have specified in your configuration file.

You can also use the mt_server command to stop and restart it:

> mt_server -d mydb stop

> mt_server -d mydb start

Managing
Datafiles

You can use the mt_file command to monitor, add, extend, or remove
datafiles on an online database. Here are some examples:

> mt_file -d mydb@host list

List of files for database mydb at time 156

ID: FILE: SIZE K: USED K: FREE K:

1: C:\FILES1: 40960: 5168: 35792:

Total: 40960: 5168: 35792:

Add a new datafile:

> mt_file -d mydb@host add -f D:\FILES2 -s 40960k

Remove a datafile:

> mt_file -d mydb@host remove -f C:\FILES1

Disk Mirroring You can also mirror datafiles in order to avoid a single point of failure with the
mt_file add command. This capability is managed directly within the
database server without the need to purchase specialized hardware or volume
management software. For instance to add a mirror datafile in the path
D:\FILES2 to an existing database:

> mt_file -d mydb@host add -f C:\FILES1 -m D:\FILES2 -s
40960k

Once a mirror is established, there is no distinction such as primary datafile and
replica datafile within the system. In particular the mirrored datafiles are listed
with the same id:

> mt_file -d mydb@host list

List of files for database mydb at time 156

ID: FILE: SIZE K: USED K: FREE K:

1: C:\FILES1: 40960: 5168: 35792:

1: D:\FILES2: 40960: 5168: 35792:
Administration Commands 81

Total: 81920: 10336: 71584:

To unmirror a datafile you can execute the mt_file remove command, which
breaks the mirror and removes the specified datafile:

> mt_file -d mydb@host remove -f C:\FILES1

Using disk
partitions

You may use disk partitions (raw devices) as datafiles and thus skip the file
system layer. This brings an additional level of data integrity and performance
when deploying databases in a production environment. Before using a partition
as a datafile, you need to initialize it with the mt_partition command. For
example to initialize the drive G: for MS Windows:

> mt_partition initialize -f \\.\G:

You can then use it as a datafile in your database configuration file or with the
mt_file command:

> mt_file -d mydb@host add -f \\.\G: -s 40960k

More information is provided in section 6.3, Using Disk Partitions as Datafiles.

Managing Users You can use the mt_user command to list, add or remove database users. You
must have the administrator privilege to do so. This is part of the database
access control mechanism which is fully described in section 5, Matisse Access
Control.

For instance to add the read-only user rose to the database mydb:

> mt_user -d mydb@host add -u rose -r

> mt_user -d mydb@host list

USER PRIVILEGE

JOHN ADM

ROSE RDONLY

Managing
Connections

You can view connections, or kill active connections with the mt_connection
command. For example:

> mt_connection -d mydb@host list

1 connections:

ID NODE USER PID CALLS TRANID BLOCKED FUNCTION

7477 jade JOHN 308 1 connection

The kill option can take any combination of the following parameters:

-c, --cid connection id

-u, --user user name

-n, --node client application node (host) name
82 MATISSE Server Administration Guide

-p, --pid client application process id

-t, --tran transaction id

For instance, to kill the connection(s) from process id 308 on the host
localhost:

> mt_connection -d mydb@host kill -n localhost -p 308

You can also get the active connections count. The count includes the
connection for the mt_connection command itself, so the minimum value
returned by this command is always 1. For example:

> mt_connection -d example count

16

Managing
Transactions

You can view transactions, enable or disable transaction processing, and even
abort pending transactions with the mt_transaction command. For example:

> mt_transaction -d mydb@host list

Current Logical Time: 157

TID HOST USER PID

173 localhost ROSE 3088

> mt_transaction -d mydb@host abort -t 173

Managing
Versions

Matisse has the unique ability to declare database versions, or savetimes, for
later use, for instance to be able to perform data analysis on a fixed set of data
while not hindering concurrent transaction processing. You can view saved
versions, declare or undeclare versions with the mt_version command. For
example:

> mt_version -d mydb@host list

Current Logical Time :157

22 FIRST00000015

24 SECOND00000017

> mt_version -d mydb@host undeclare -n first

Monitoring a
Database

You can monitor the database server activities directly from a command line with
the mt_server command with the monitor option. This command provides
information about the database state, database objects count, memory usage and
disk I/O activities.

>mt_server -d mydb monitor

#1

Database State: ONLINE

Object Count:

 Single version: 32456630U
Administration Commands 83

 Multi version: 65435

Memory Usage:

 Page cache size: 512 MB

 Object table size: 25 MB

Data files: 1

ID:Location : Status:Capacity: Used:Position: I/ORead:I/OWrite:

1:C:\WORK\MATISSE\DATA: online: 640: 11: 11: 0: 0:

You can also get additional configuration and status information with the
mt_server info command. For example:

$ mt_server -d mydb info

Database:

 Name: mydb

 Server version: 8.3.0

 Datafile version: 8.3.0

Status:

 Start date: 05 Jul. 2009 15:33:13

 Server uptime: 52 sec

 Backup date: not available

 Version collect date: not available

Configuration:

 size: 8 Kbytes

 cache size: 32 Mbytes

 Server failover: disabled

 Datafile extension: automatic

 Access control: disabled

 Version collection: automatic

Current State:

 Transaction manager: enabled

 Current logical time: 2

 Highest collected logical time: 1

 Last backup logical time: 0

Extending the
Page Server
Cache

You can extend the size of the server cache on a running database at any time
even when clients are connected and transactions are active. For example to
extend the server page cache to 1Gbytes:

> mt_server -d mydb extendcache -s 1024M

Server cache size extended to 1024M
84 MATISSE Server Administration Guide

Extending the
Object Table
Cache

You can extend the maximum size of the in-memory multi-version object table
cache on a running database at any time even when clients are connected and
transactions are active. For example to extend the object table cache to a
maximum of 5Gbytes:

> mt_server -d mydb extendcache -o -s 5G

Object table cache size extended to 5G

For example to remove the object table cache size constraints:

> mt_server -d mydb extendcache -o -s 0

Changing the
Run Frequency
of Operations

You can change on an online database the run frequency of the various
automatic operations. For example to change the run frequency of the automatic
version collection to 35 seconds:

> mt_server -d mydb set runfrequency -a -f 35

For example to change the run frequency of the clear object table operation to
15 seconds:

> mt_server -d mydb runfrequency -c -f 15

Managing
License Keys

The mt_server setlicense command allows you to set the customer license
key on your server. You need to be logged as root (administrator on Win-
dows) to successfully install the license key. For example:

> mt_server setlicense -k B0FF-ED65-11C8-0B2F-A3BD-FE16-
E17E-624C

The mt_server checklicense command allows you to check the cus-
tomer license key installed on your server.

> mt_server checklicense

Your 31 days license expires in 15 days

The --full option provides a complete description of the installed license.
> mt_server checklicense --full

License Description:

Floating License - Developer Edition - x64 - up to 512
concurrent Users - up to 16 logical CPUs

License options: mirroring enabled, raw partition datafiles
enabled, multi-datafiles enabled, replication enabled

License expires in 3418 days
Administration Commands 85

10 Database Transactional Replication

10.1 Introduction

Feature
Overview

The Matisse server provides full distributed synchronous replication between
two database servers, one called the 'master' and the other one the 'replica'. The
main usage of replication is to provide redundancy across different systems to
avoid a single point of failure.

The replication mechanism enforces strong consistency at the transaction level
between the databases. A successful commit status is returned to the client
application when the client updates have been committed on both the master
and the replica.

The updates of both the data instances and the schema are replicated. For
instance, the creation of an index on the master will create the same index on
the replica.

In case of failure of the master database, the administrator can change the state
of the replica database so that it may be used as a standalone database. In case
of failure of a replica database, a new replica database can be created and
synchronized with the master database.

Replication
Benefits

There are several usages for the replica database, that can also be combined
together:

As a Hot Standby Database. In case of a master database crash, the
applications can be reconnected immediately to the replica database.

As a Data Analysis Database. The replica database is accessible for read
only queries thus off loading the master database for this type of processing.

As a In-Memory Database. The replica can be running on main memory
storage for fast query access, the data redundancy on the master ensuring
recoverability in case of a system crash. The opposite is also possible: the
master database may use in-memory datafiles, with the replica enforcing the
data recoverability.

As a Read-Access Load Distribution System. The replica database can
provide access for read-only queries. Since the master and the replica
databases are always in sync, the application can achieve load balancing for
data access among the servers, doubling the data serving power of the
application.
86 MATISSE Server Administration Guide

10.2 Replication Establishing and Disestablishing

Before
Establishing
Replication

There are two situations to consider:

If the master database is empty, simply initialize the replica as a new
database.

For a non-empty master database, you need to stop transaction processing
on the master, run a full backup of the master, then restore it on the new
replica and restart the replica database after restore.

Establishing
Replication

The master is notified to start replication to the replica with the mt_replicate
utility:

 mt_replicate -d masterdb@host1 establish -r
replicadb@host2

This command establishes replication between the two databases and disables
transaction processing for all the replica clients other than the master.

Retry or Noretry
Mode

The -m option can be used to set the retry or noretry mode. The noretry
mode indicates that the master will automatically set replication as failed in
case the connection is broken with the replica. In this event the master will act
as a standalone database.

For instance:

 mt_replicate -d masterdb@host1 establish -r
replicadb@host2 -m noretry

Replication is set by default in retry mode. In this mode the master keeps
retrying to connect to the replica until the replica is up and running.

This mode can be switched at any time while replication is active by running
the mt_replicate establish command.

Disestablishing
Replication

Disestablishing is done in a similar way:

 mt_replicate -d masterdb@host1 disestablish -r
replicadb@host2
Database Transactional Replication 87

The replica stays online and becomes a standalone database, and thus it is
available for transaction updates. If after disestablishing any update occurs on
either side, the replication cannot be re-established besides doing a full restore
of the replica from an up-to-date master backup.

You can use the same command without the -r option to disestablish
replication for a replica database. Then the replica database becomes
standalone.

 mt_replicate -d replicadb@host2 disestablish

Swapping Roles
Between Master
and Replica

To have the master and the replica exchange roles while the system is online,
you will first disestablish replication, then re-establish it with the
mt_replicate command.

To enforce that no update can take place on the databases, you can use the
mt_transaction command to disable transactions on the initial master until
replication has been re-established.

Here is a typical sequence of commands that you may execute:

mt_transaction -d masterdb@host1 disable

mt_replicate -d masterdb@host1 disestablish -r
replicadb@host2

mt_replicate -d replicadb@host2 establish -r
masterdb@host1

10.3 Replication Monitoring
The mt_monitor tool shows a replica as a standalone database, with a client
connection from the master database server. Note that replicas can be accessed
by client applications at all times in version mode.

The mt_replicate info command provides the following information:

mt_replicate -d masterdb@host1 info

 Master database masterdb at time 73600

 REPLICA HOST: DATABASE: STATUS: MODE: TRAN PENDING

 host2 replicadb CONNECTED retry 1

mt_replicate -d replicadb@host2 info

 Replica database replicadb at time 73600

 MASTER HOST: DATABASE: STATUS:

 host1 masterdb CONNECTED
88 MATISSE Server Administration Guide

Replication
status

The replication status indicates the current state of the master-replica
synchronization, as detailed on the following table.

10.4 Resynchronization at restart of after replica
failure

Shutdown
Restart

For shutdown we recommend to first shutdown the master so that it can
disconnect from the replica, and then shutdown the replica:

mt_server -d masterdb stop

mt_server -d replicadb stop

After a graceful shutdown and restart or a crash restart, the master connects
automatically to the replica and resynchronizes to the latest committed
transaction. You may first restart the replica, so that the master database can see
it upon its own restart. It is mandatory to restart in this order if you used the
noretry option to establish replication:

mt_server -d replicadb start

mt_server -d masterdb start

Network or
Replica Failure

In case of network failure or replica failure, by default the master keeps
retrying to connect. The updating transactions are blocked on master until the
replica becomes online or the administrator turns off replication. The retry
mode can be turned off setting the noretry option with the mt_replicate
command.

Table 10.1 Replication info status

Status Comments

CONNECTED Normal status.

CONNECTING Master currently connecting to the replica. If the replica is
offline or restarting the master keeps retrying and shows the
state CONNECTING.

FAILED The status FAILED appears generally when the replica is
disynchronized. For instance if replication is turned off, then
new updates have been performed on either side, and then
replication is turned on again.
In case of FAILED status, the administrator must terminate
replication explicitly with the mt_replicate command.
Database Transactional Replication 89

Switching to the
replica in case of
master failure

Upon failure of the master, or by decision of the administrator, the replica can
become a standalone database by disestablishing replication on it with the
mt_replicate command.

mt_replicate -d replicadb@host2 disestablish

The user application initially connecting to the master must re-establish
connections with the replica. This is not currently automated by the Matisse
client library.
90 MATISSE Server Administration Guide

Database Transactional Replication 91

11 Database Snapshot Replication

11.1 Introduction

Feature
Overview

Matisse XML-based Snapshot Replication is a full distributed asynchronous
replication. The Publisher-Subscribers model applies to describe how
incremental changes are propagated from the Publisher (master database) to
Subscribers (replica databases) as they occur. Snapshot replication typically
starts with a full data snapshot of the Publisher database. As soon as the initial
snapshot is taken, subsequent data changes made at the Publisher are delivered
on demand to the Subscribers. All data snapshots (full and increment) are
published into XML documents.

The Subscriber initiates the replication by requesting a full data snapshot of the
Publisher database. The XML documents produced are equivalent to a full
XML export of the database. Subsequent requests from the Subscriber produce
data snapshot increment reflecting the net data change since the previous
request.

The Subscriber database is synchronized with the Publisher when all the data
snapshots are loaded. The data snapshots must be loaded in the order they have
been produced.

The production of data snapshots into XML document files give database
administrators a great latitude to design the most appropriate replication
workflow. The XML format is simple, extensible and universal and XML
documents compress very well which is ideal for network transfers. The
Enterprise Manager Task Scheduler is well suited to automate the replication
workflow.

Production environments that require a minimum downtime can benefit from
Snapshot replication to streamline major software and hardware upgrades.

Benefits There are several usages for the replica database, that can also be combined
together:

As a Hot Standby Database. In case of a master database crash, the
applications can be reconnected immediately to the replica database.

As a Data Analysis Database. The replica database is accessible for read
only queries thus off loading the master database for this type of processing.
92 MATISSE Server Administration Guide

As a In-Memory Database. The replica can be running on main memory
storage for fast query access, the data redundancy on the master ensuring
recoverability in case of a system crash. The opposite is also possible: the
master database may use in-memory datafiles, with the replica enforcing the
data recoverability.

As a Read-Access Load Distribution System. The replica database can
provide access for read-only queries. Since the master and the replica
databases are always in sync, the application can achieve load balancing for
data access among the servers, doubling the data serving power of the
application.

Design
Overview

Matisse XML-based Snapshot Replication publishes logical data snapshot of
the master database. The objects are identical, but the oid of each object from
the master is different in the replica database.

The Publisher database relies on Matisse version tags to keep track of the
publishing state. The first data snapshot contains all the data created up to the
publishing time. Subsequent publishing produce data snapshot increment
reflecting the net data change since the previous one. This data snapshot
includes references to deleted, updated and inserted data.

The Subscriber database alters the Publisher database schema to preserve a
reference to the OIDs of the Master database as well as a information about the
last snapshot increment loaded. When the replication is de-established, the
schema changes are removed and the database schema is identical to the
original Publisher database schema.

11.2 Replication Establishing

Before
Establishing
Replication

There are no constraints for the Publisher database before establishing the
replication. The Subscriber database must be empty of the Publisher database.
In case the snapshot replication is limited to a specific namespace, the
Subscriber database can manage application data into different namespaces.

Establishing
Replication

The Publisher database must export the database schema and the replication is
established with the publishing of a full data snapshot.

$ mt_sdl -d master@localhost export --odl -f
masterDbSchema.odl

$ mt_xsr -d master@localhost --verbose=2 publish -f
masterDb_01f.xml -n xsrExample --full

 [INFO] task #1 writing masterDb_01f_xsr_ia001.xml

 [INFO] task #1 writing masterDb_01f_xsr_ir002.xml

 [STAT] Number of top-level objects published: 8
Database Snapshot Replication 93

 [STAT] Number of object insert published: 8

 [STAT] Number of object update published: 0

 [STAT] Number of object delete published: 0

 [OPTN] Number of prefetch objects: 128

 [OPTN] XML data with OID xml attribute: YES

 [OPTN] Media data into external files: NO

 [OPTN] Namespace: xsrExample

 [OPTN] XML data file I/O mode: stream

 [TIME] Start schema info building: 15:48:29.703
Elapsed 00:00:00.000

 [TIME] End schema info building : 15:48:29.704
Elapsed 00:00:00.000

 [TIME] Start extracting: 15:48:29.686
Elapsed 00:00:00.000

 [TIME] End extracting : 15:48:29.708
Elapsed 00:00:00.022

On the Subscriber side, the first step requires to import the database schema of
the publisher database and to establish the replication by loading the full data
snapshot.

$ mt_sdl -d replica@localhost import --odl -f
masterDbSchema.odl

$ mt_xsr -d replica@localhost --verbose=2 subscribe -f
masterDb_01f.xml -n xsrExample

 [INFO] task #1 loading masterDb_01f_xsr_ia001.xml

 [INFO] task #1 loading masterDb_01f_xsr_ir002.xml

 [STAT] Number of top-level xml objects read: 8

 [STAT] Number of objects created: 8

 [STAT] Size of oid mapping table: 0.01 MB

 [OPTN] Namespace origin: xsrExample

 [OPTN] Namespace destination: xsrExample

 [OPTN] Number of xml objects parsed at once: 256

 [OPTN] Number of objects per transaction: 20480

 [TIME] Start loading: 16:06:05.519
Elapsed 00:00:00.000

 [TIME] End loading : 16:06:05.526
Elapsed

Publishing
Changes

The Publisher database publishes on demand the net data change since the
previous publication.

$ mt_xsr -d master@localhost --verbose=2 publish -f
masterDb_01i1.xml -n xsrExample --increment

 [INFO] task #1 writing masterDb_01i1_xsr_ia001.xml

 [INFO] task #1 writing masterDb_01i1_xsr_ir002.xml

 [INFO] task #1 writing masterDb_01i1_xsr_ua003.xml
94 MATISSE Server Administration Guide

 [INFO] task #1 writing masterDb_01i1_xsr_ur004.xml

 [STAT] Number of top-level objects published: 6

 [STAT] Number of object insert published: 2

 [STAT] Number of object update published: 4

 [STAT] Number of object delete published: 0

 [OPTN] Number of prefetch objects: 128

 [OPTN] XML data with OID xml attribute: YES

 [OPTN] Media data into external files: NO

 [OPTN] Namespace: xsrExample

 [OPTN] XML data file I/O mode: stream

 [TIME] Start schema info building: 15:55:10.271
Elapsed 00:00:00.000

 [TIME] End schema info building : 15:55:10.280
Elapsed 00:00:00.009

 [TIME] Start extracting: 15:55:10.258
Elapsed 00:00:00.000

 [TIME] End extracting : 15:55:10.292
Elapsed 00:00:00.033

When a new data snapshot increment is available, it can be loaded into the
Subscriber database.

$ mt_xsr -d replica@localhost --verbose=2 subscribe -f
masterDb_01i1.xml -n xsrExample

 [INFO] task #1 loading masterDb_01i1_xsr_ia001.xml

 [INFO] task #1 loading masterDb_01i1_xsr_ua003.xml

 [INFO] task #1 loading masterDb_01i1_xsr_ir002.xml

 [INFO] task #1 loading masterDb_01i1_xsr_ur004.xml

 [STAT] Number of top-level xml objects read: 8

 [STAT] Number of objects created: 4

 [STAT] Size of oid mapping table: 0.01 MB

 [OPTN] Namespace origin: xsrExample

 [OPTN] Namespace destination: xsrExample

 [OPTN] Number of xml objects parsed at once: 256

 [OPTN] Number of objects per transaction: 20480

 [TIME] Start loading: 16:06:36.903
Elapsed 00:00:00.000

 [TIME] End loading : 16:06:36.915
Elapsed 00:00:00.012

Disestablishing
Replication

The Publisher can disestablish the replication with the unpublish command.

$ mt_xsr -d master@localhost unpublish -n xsrExample

The Subscriber can disestablish the replication with the unsubscribe
command.
Database Snapshot Replication 95

$ mt_xsr -d replica@localhost unsubscribe -n xsrExample

$ mt_xsr -d replica@localhost describe --subscriber

No XML-based Snapshot Replication subscriber on database
replica at time 14

11.3 Replication Monitoring

Publisher Sate The Publisher database maintains the current state of the replication.

$ mt_xsr -d master@localhost describe --publisher

XML-based Snapshot Replication publisher on database master
at time 6

 Publisher #1

 Publisher name: master@localhost

 Snapshot type: full (#1)

 Version name: MTXSR00001086_00000001_00000005

 Version time: 6

 Publisher namespace: xsrExample

The data snapshot files also contains the publishing information.

$ mt_xsr -d master@localhost describe -f masterDb_01f.xml

XML-based Snapshot Replication Document:

 Filename: masterDb_01f.xml

 Publisher: master@localhost

 Generation date: 2013-05-02 15:48:29

 Snapshot type: full (#1)

 Version name: MTXSR00001086_00000001_00000005

 Version time: 6

 Namespace name: xsrExample

 Insert count: 8

 Update count: 0

 Delete count: 0

Subscriber Sate The Subscriber database maintains the current state of the replication.

$ mt_xsr -d replica@localhost describe --subscriber

XML-based Snapshot Replication subscriber on database
replica at time 12

 Subscriber #1

 Publisher name: master@localhost

 Snapshot type: increment (#2)

 Version name: MTXSR00001086_00000002_00000009
96 MATISSE Server Administration Guide

 Version time: 10

 Publisher namespace: xsrExample

 Subscriber namespace: xsrExample

11.4 mt_xsr utility

mt_xsr publish The mt_xsr utility with the publish command allows you to publish into
XML documents the database incremental changes.

$ mt_xsr publish -h
MATISSE XML-based Snapshot Replication Manager x64 Version 9.1.0.0 (64-bit
Edition) - Apr 29 2013.
(c) Copyright 2013 Matisse Software Inc. All rights reserved.

Usage:
 mt_xsr [OPTIONS] publish -f <xmlfile> [-s <size>[M|G]] [-p <n>] [-x <n>] [-n
<nsname>] [-d|-m] -a|-i [-h]
 -f, --file=... Specify the XML-based Snapshot Replication document file.
 The XML data is published into a collection of XML
 segment files named <xmlfile>_xsr_do<docid>.xml,
 <xmlfile>_xds_ia<docid>.xml, <xmlfile>_xsr_ir<docid>.xml,
 <xmlfile>_xds_ua<docid>.xml and
 <xmlfile>_xsr_ur<docid>.xml.
 -s, --size=... Specify the XML segment file max size.
 -p, --parallel=... Publish data with <n> tasks running in parallel.
 -x, --prefetch=... Specify the number of objects to be prefetched when
 exporting data. The default value is 128. The values
 range between 1 and 128.
 -d, --iobuffer Write XML data to the file in buffered I/O mode.
 -m, --iostream Write XML data to the file in stream I/O mode.
 -a, --full Publish the entire database.
 -i, --increment Publish the database increment since the last
 publication.
 -n, --ns=... Specify the namespace from which the objects are
 exported.
 -h, --help Display this help and exit.

mt_xsr
subscribe

The mt_xsr utility with the subscribe command allows you to establish
replication with a master database and to synchronize with the master by
loading the database incremental changes from XML documents.

$ mt_xsr subscribe -h
MATISSE XML-based Snapshot Replication Manager x64 Version 9.1.0.0 (64-bit
Edition) - Apr 29 2013.
(c) Copyright 2013 Matisse Software Inc. All rights reserved.

Usage:
 mt_xsr [OPTIONS] subscribe -f <xmlfile> [-n <nsname>] [-p <n>] [-x <n>] [-c
<n>] [-h]
 -f, --file=... Specify the XML-based Snapshot Replication document file
 to be loaded into the database.
Database Snapshot Replication 97

 -n, --ns=... Specify the subscriber namespace into which the objects
 are imported. When the --ns option is ommitted, each
 object is imported in a namespace matching the schema
 class namespace.
 -p, --parallel=... Import data with multiple tasks running in parallel. The
 number of tasks is limited by the number of XML segment
 files.
 -x, --parse=... Specify the number of xml objects to be parsed in one
 sequence. The default value is 256 (1024 in parallel
 mode). The values range between 1 and 2048.
 -h, --help Display this help and exit.

mt_xsr describe The mt_xsr utility with the describe command allows you to view
publishers and subscribers settings information.

$ mt_xsr describe -h
MATISSE XML-based Snapshot Replication Manager x64 Version 9.1.0.0 (64-bit
Edition) - Apr 29 2013.
(c) Copyright 2013 Matisse Software Inc. All rights reserved.

Usage:
 mt_xsr [OPTIONS] describe [-a|-p|-s] [-f <xml_file>] [-h]
 -a, --all Provide publishers and subscribers settings information
 from the database.
 -p, --publisher Provide publishers settings information from the database.
 -s, --subscriber Provide subscribers settings information from the
database.
 -f, --file=... Specify the XML-based Snapshot Replication document file
 to be checked.
 -h, --help Display this help and exit.

mt_xsr
unpublish

The mt_xsr utility with the unpublish command allows you to de-
establish the replication of a the master database with a replica database.

$ mt_xsr unpublish -h
MATISSE XML-based Snapshot Replication Manager x64 Version 9.1.0.0 (64-bit
Edition) - Apr 29 2013.
(c) Copyright 2013 Matisse Software Inc. All rights reserved.

Usage:
 mt_xsr [OPTIONS] unpublish -a | -n <nsname> [-h]
 -a, --all Remove all publishers settings from the database.
 -n, --ns=... Specify the namespace in the database from which the publisher
 settings are removed.
 -h, --help Display this help and exit.

mt_xsr
unsubscribe

The mt_xsr utility with the unsubscribe command allows you to de-
establish the replication of a replica database with a master database.

$ mt_xsr unsubscribe -h
MATISSE XML-based Snapshot Replication Manager x64 Version 9.1.0.0 (64-bit
Edition) - Apr 29 2013.
(c) Copyright 2013 Matisse Software Inc. All rights reserved.
98 MATISSE Server Administration Guide

Usage:
 mt_xsr [OPTIONS] unsubscribe -a | -n <nsname> [-h]
 -a, --all Remove all subscribers settings from the database.
 -n, --ns=... Specify the subscriber namespace in the database from which
Database Snapshot Replication 99

12 Database Backup and Restore

12.1 Introduction
You can perform full and incremental parallel backups of databases while the
system in online with the mt_backup utility. There is no need to block updates
during a backup, as the Matisse server keeps a snapshot of the database at the
time of the beginning of the backup operation.

The mt_backup utility performs a binary backup of the data pages that contain
valid data at the time of backup. It cannot be used to upgrade a database to a
major revision of Matisse, or to migrate a database from different system
architectures, as for instance between SPARC and Intel platforms, for these
purposes you may use the mt_xml utility instead.

Full and
Incremental
Backup

A full backup copies all the database content to the backup file or tape. An
incremental backup copies only the updates that have occurred since the last
full or incremental backup.

Parallel Backup You can backup a database to several files or tapes in parallel, and restore the
generated files in parallel.

12.2 Running a Full or Incremental Backup

Running a Full
Backup

You must first ensure that the database is online, and that there are no ongoing
administrative operations like adding, extending or removing a data file for the
database. We provide here a simple example, running a full backup for the
database mydb on one backup file:

% mt_backup -d mydb start -f

164 Kbytes to Backup

% mt_backup -d mydb write -f C:\mydb.bkp -s 164k

done

% mt_backup -d mydb end

Note that for backup start, we specify the -f option for full backup.

Running an
Incremental
Backup

You can then run incremental backups for the same database, by using the -i
option:

% mt_backup -d mydb start -i
100 MATISSE Server Administration Guide

64 Kbytes to Backup

% mt_backup -d mydb write -f C:\mydb1.bkp -s 64k

done

% mt_backup -d mydb end

Automated
Backups

The backup commands can be easily integrated into scripts, for instance a full
backup can be automated with the following .bat file on MS Windows:

rem @echo off

set DB=%2@%1

set BKP=%3

if exist %BKP% del %BKP%

for /f %%f in ('call mt_backup -d %DB% start -f') do set
bkpsz=%%f

echo backup size: %bkpsz%

for /f %%f in ('call mt_backup -s -d %DB% write -f %BKP% -s
%bkpsz%k') do set bkpres=%%f

echo backup result: %bkpres%

call mt_backup -d %DB% end

You may then execute it as follows, assuming you call it backup.bat:

C:\> backup host mydb C:\mydb.bkp

The same set of commands written in a Unix style .sh script:

DB=${2}@${1}

BKP=${3}

/bin/rm -f ${BKP}

res=`mt_backup -d ${DB} start -f`

echo $res

for bkpsz in $res; do

mt_backup -d $DB write -f ${BKP} -s ${bkpsz}k

break;

done

mt_backup -d ${DB} end

Backup Journal
Files

For each database that is backed up, a backup journal file is created in the
MATISSE_LOG directory. It contains information on the backup files. For
instance the journal file for mydb will be named mydb.bjl and may contain
the following:

2002-12-27:19:13:00.00000000000 0000000004 C:\mydb1.bkp
Database Backup and Restore 101

2002-12-27:19:15:00.00000000005 0000000007 C:\mydb2.bkp

The first field is the date when the backup files where produced, the next two
fields are the logical times (or versions) that are saved in each backup file. In
this example the file mydb1.bkp contains the versions of the data objects from
0 to 4, the file mydb2.bkp contains the versions of the data objects from 5 to
7.

Thus at the time of backup, the current version was 7. It may be checked when
the database is online with the mt_version command:

% mt_version -d mydb list

Current Logical Time :7

12.3 Restore
When restoring, you must first preinitialize your database, then you can restore
your data with the restore command as on the following example:

% mt_server -d mydb preinitialize

% mt_backup -d mydb restore -f C:\mydb.bkp -s

Restore completed from device 'C:\mydb.bkp'

The option -s can be used when restoring the last backup file that has been
generated by backup. It indicates to shutdown the server upon completion. The
server must then be restarted to complete the operation:

% mt_server -d mydb start

For restoring from an incremental backup, you can restore the full backup files
and the incremental backup files in any order, either sequentially or in parallel,
and then shutdown the database.

For instance if you generated the full backup file mydbf.bkp and then the
incremental backup file mydbi.bkp, you can restore your database in the
following way:

% mt_server -d mydb preinitialize

% mt_backup -d mydb restore -f C:\mydbf.bkp

% mt_backup -d mydb restore -f C:\mydbi.bkp -s

% mt_server -d mydb start

12.4 Running a Parallel Backup
For a parallel backup you will run the backup write command in asynchronous
mode once for each backup file, and then wait for completion of all commands
with the backup end command, as shown on this example:
102 MATISSE Server Administration Guide

% mt_backup -d mydb start -f

2000 Kbytes to Backup

% mt_backup -a -d mydb write -f C:\mydb1.bkp -s 1000k

% mt_backup -a -d mydb write -f C:\mydb2.bkp -s 1000k

% mt_backup -d mydb end

The option -a for the backup write commands specifies the asynchronous
mode. As for most database administration commands, the backup end
command is by default synchronous and waits for all the backup write
commands to complete.

If you want to cancel an ongoing backup, you may use the backup end
command with the force option -f:

% mt_backup -d mydb end -f

12.5 Parallel Restore
Once you have generated several backup files with either a sequential or a
parallel backup, you can restore them in parallel by running the restore
command asynchronously, once for each backup file. For example to restore
from the files mydb1.bkp and mydb2.bkp:

% mt_server -d mydb preinitialize

% mt_backup -a -d mydb restore -f C:\mydb1.bkp

% mt_backup -a -d mydb restore -f C:\mydb2.bkp

% mt_server -d mydb stop

% mt_server -d mydb start

Here the backup files are restored in asynchronous mode, while the server stop
command is synchronous by default and waits until restore and shutdown
completion.
Database Backup and Restore 103

Appendix A Starting Matisse Server as
a Windows Service

A.1 Introduction
This appendix describes how to start a Matisse server as a Windows service,
allowing the Matisse Server to come up and service requests even when no user
is logged on. It requires the Windows Resource kit srvany.exe and
instsrv.exe utilities.

A.2 Installation
Install srvany.exe utility as a Windows service:

instsrv matisse_<dbname> <path>\srvany.exe

Configure via the Services applet (Startup dialog) of the Control Panel as
automatic or manual, as appropriate. Then, if needed, change the Account
Name and Password that this newly installed service will use for its Security
Context (do not choose LocalSystem account, since it does not have network
access).

A.3 Specifying Matisse Server and Its Parameters
Run the Registry Editor (regedit.exe).

Create a Parameters key under:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\matis
se_<dbname>

Under this key, create the Parameters key by selecting “Add key” from the
Edit menu.

Select the Parameters key created in the previous step. Under the
Parameters, create an Application value of type REG_SZ and specify the
full path of Matisse server executable mts.exe.

For example:

Application REG_SZ C:\matisse\bin\mts.exe

Under the above key, create an AppParameters value of type REG_SZ and
specify the Matisse database to start.
104 MATISSE Server Administration Guide

For example:

AppParameters REG_SZ dbname

A.4 Starting and Stopping the Matisse Server
Service

Start: If the service is configured as Automatic, the user does not need to start
it explicitly: it is started automatically every time when the system is rebooted.

For Manual services, the user may start the service via the Services applet of
the Control Panel or via the net start matisse_<dbname> command.

Stop: When you stop the service, it will shutdown the Matisse server service.
The way to stop the service is to use the Services applet of the Control Panel or
the net stop matisse_<dbexample> command.

A.5 Uninstall
If you want to prevent a Matisse server service from running until further
notice, you should configure it via the Services applet (Startup dialog) of the
Control Panel as Disabled.

If you want to remove permanently a Matisse server service: If the service is
running, stop it and run:

instsrv matisse_<dbname> remove
Starting Matisse Server as a Windows Service 105

Index

A
abort a transaction 66, 67
aborting a transaction 83
adding a new datafile 62, 81
adding a new user 61, 82
administrator 40, 41
asynchronous backup 103
at command 78
AUTOCOLLECT configuration parameter 47
AUTOCOLLECTFREQ configuration parameter 48
AUTOEXTEND configuration parameter 47
automated backup 101
automatic version collection 77
AUTORESTART configuration parameter 49, 50

B
backup journal files 101

C
CACHESIZ configuration parameter 46
checking a license key 85
concurrency control 14
configuration file 14, 17, 43, 58
counting active connections 83
creating a mirror datafile 62

D
database log file 78
database preinitialize 102
datafiles 15, 43, 81
DATEXTENDSIZ configuration parameter 47
DATFULLINIT configuration parameter 49
DATINITSZ configuration parameter 49
DATINMEMORY configuration parameter 50
DBA Tool 18, 19, 57
declaring a version 83
deleting a datafile 62

disabling transaction processing 83, 87
disestablishing replication 87, 95
disk mirroring 81
disk partitions 47, 54, 55, 82
dkinfo 54
dropping a user 61

E
enabling transaction processing 83
environment variables 17
establishing replication 87, 93
extendcache 84, 85

F
fault tolerance 14
format 54
full backup 100

I
incremental backup 100
info on a database server 84
intrinsic versioning 13

K
kill a connection 66, 67

L
LD_LIBRARY_PATH environment variable 38, 57
License Keys 85
load balancing 13
locking granularity 14
log file 15, 18
logical time 70, 79

M
managing Users 61
106 MATISSE Server Administration Guide

master database 87
master-replica synchronization 89
MATISSE_CFG environment variable 17, 18
MATISSE_HOME environment variable 18, 19
MATISSE_LOG environment variable 18, 25, 37
MATISSE_NET_PATH environment variable 19, 25
MATISSE_PORTMON_ADDR environment variable 20, 23
MATISSE_PORTMON_NAME environment variable 21
MATISSE_SMLISTENER_ADDR environment variable 37
MAXBKPLOGFILES configuration parameter 51
MAXSQLDOP configuration parameter 50
MAXSQLTHRDPOOL configuration parameter 51
MAXSRVLOGFILES configuration parameter 51
MEMORYTRANS configuration parameter 50
mirroring datafiles 14, 43, 81
monitoring a database 83
mount 55
mt_backup 100
mt_connection 82
MT_DATA_ACCESS_MODE 42
MT_DATA_DEFINITION 42
MT_DATA_MODIFICATION 42
MT_DATA_READONLY 42
mt_emgr 57
mt_file 55, 81
mt_monitor 88
mt_partition 54, 56, 82
mt_pmadm 25, 26
mt_portmon 22
mt_replicate 87
mt_server 81
mt_smlistener 36
mt_smlistener 36
mt_transaction 83, 88
mt_user 82
mt_version 83
MtAllocateConnection 42
MtConnectDatabase 42
MtConnection 42
MtFreeConnection 42
Index 107

N
NAME configuration parameter 45
non-blocking data access 77

O
Object Table Cache 85
OBJTABCLRFREQ configuration parameter 49
OBJTABLESIZ configuration parameter 48
operating system access control 41

P
Page Server Cache 84
PAGESIZ configuration parameter 45
parallel backup 100, 102
parallel restore 103
PATH configuration parameter 53
port monitor 18, 19, 20, 21, 22, 25
PORTS configuration parameter 52

R
raw devices 47, 54, 56
read-only user 40
refresh interval 71
removing a datafile 81
removing a user 82
replica database 87
replication noretry mode 87, 89
replication resynchronization 89
replication retry mode 87
replication status 89
restore 102
runfrequency 85

S
schedule service 78
SECURITY configuration parameter 40, 46
setting a license key 85
SMlistener 49
standalone database 90
stopping a database 59
108 MATISSE Server Administration Guide

swap partitions 55
swapping roles between master and replica 88
system user 40, 41

T
tcp transport 22
TCPKEEPALIVE configuration parameter 52
transport 19, 20, 22
two phase locking 14

U
undeclaring a version 83
Unix file descriptors 69
unmirroring datafiles 82

V
version collection 77
versioning architecture 77
Index 109

	Matisse® Server Administration Guide
	Contents
	Tables
	Figures
	Introduction
	Conventions
	Text
	Code
	variable
	References

	1 Matisse Server: An Overview
	1.1 Basic Concepts
	I/O Parallelism and Copy Semantics
	Temporal Features
	Collect Versions
	Transaction Model and Concurrency Control
	Disk Fault Tolerance

	1.2 Database Environment
	Configuration File
	Data Files
	Log File

	1.3 Managing Your Database
	1.4 Transferring Databases Between Hosts

	2 The Matisse Environment
	MATISSE_CFG
	Purpose

	MATISSE_HOME
	Purpose

	MATISSE_LOG
	Purpose

	MATISSE_NET_PATH
	Purpose

	MATISSE_PORTMON_ADDR
	Purpose
	MS Windows
	UNIX Non Solaris
	Solaris

	MATISSE_PORTMON_NAME
	Purpose

	MATISSE_SMLISTENER_ADDR
	Purpose

	3 Matisse Connections
	3.1 Introduction
	3.2 Matisse Connections
	Setting Up a Connection Environment
	Solaris
	Setting a Transport Priority
	Solaris
	Solaris
	Solaris
	Port Monitor Daemon Log File
	Port Monitor Utility mt_pmadm
	mt_pmadm
	Syntax
	UNIX Options
	MS Windows Options
	Arguments
	Purpose
	Starting a Port Monitor Daemon
	Disabling a Port Monitor Daemon
	Enabling a Port Monitor Daemon
	Checking a Port Monitor Daemon
	Listing the Port Monitor Daemon’s Services
	Removing a Service from a Port Monitor Daemon
	Removing a Port Monitor Daemon
	Getting Help

	3.3 Connections through Firewalls
	3.4 Portmon Messages
	Errors Resulting from the Utility mt_pmadm
	BADANSWER
	CMDRCVFAILED
	Solution
	CMDSNDFAILED
	Solutions
	CREATEPIPEFAILED
	Solutions
	INVTAGSIZE
	Solution
	NOPERM
	Solution
	OPENPIPEFAILED
	Solutions
	PMNORUNNING
	Solutions
	PMNOTFOUND
	Solution
	PMRUNNING
	Solution
	STARTFAILED
	Solutions
	SVCLISTFAILED
	Solutions
	SVCNOREGISTER
	Solutions
	SVCRMFAILED
	Solutions
	Error Messages of the Port Monitor Log File
	CMDRCFAILED
	Solutions
	CMDSNDFAILED
	Solution
	CONNBROKEN
	Solution
	ENDPOINTFAILED
	Solution
	INITFAILED
	Solutions
	INVTRANSPORT
	Solution
	OPENLOGFAILED
	Solution
	OPENPIPEFAILED
	PMADDRNOTFOUND
	Solution
	SVCALREGISTER
	Solution
	SVCNOREGISTER
	Solutions
	SVCREGFAILED
	Solution
	SVCUNREGFAILED
	Solution
	TRPRCVFAILED
	Solutions
	TRPSNDFAILED
	Solutions
	UNKNOWNMSG
	Solution

	4 Server Manager Listener
	4.1 Introduction
	4.2 Managing Remote Operations
	4.3 Controlling Remote Operation Requests
	4.4 Managing database autorestart
	4.5 Running mt_smlistener daemon
	Setting Up a Connection Environment
	SMListener Daemon Log File
	Starting a SMListener Daemon
	UNIX
	Solaris
	Linux
	Windows
	Stopping the SMListener daemon
	UNIX
	Windows

	4.6 Connections through Firewalls

	5 Matisse Access Control
	5.1 Introduction
	Different Privileges
	System User
	Enabling Access Control

	5.2 Managing Users
	Operating System Access Control
	Using Matisse Access Control
	Add/Drop/ Modify Users
	Create an Administrator

	5.3 Database Connection API

	6 Configuring a Database
	6.1 Configuration File
	File Syntax

	6.2 Configuration Parameters
	Mandatory Parameters
	Default Values
	Automatically Updated Parameters
	NAME
	Purpose
	Server Use
	Type

	PAGESIZ
	Purpose
	Server Use
	Type
	Default Value

	CACHESIZ
	Purpose
	Server Use
	Type
	Default Value

	SECURITY
	Purpose
	Server Use
	Type
	Default Value

	AUTOEXTEND
	Purpose
	Type
	Default Value

	DATEXTENDSIZ
	Purpose
	Server Use
	Type
	Default Value

	AUTOCOLLECT
	Purpose
	Server Use
	Type
	Default Value

	AUTOCOLLECTFREQ
	Purpose
	Type
	Default Value

	OBJTABLESIZ
	Purpose
	Type
	Default Value

	OBJTABCLRFREQ
	Purpose
	Type
	Default Value

	AUTORESTART
	Purpose
	Type
	Default Value

	DATFULLINIT
	Purpose
	Server Use
	Type
	Default Value

	DATINITSIZ
	Purpose
	Server Use

	DATINMEMORY
	Purpose
	Server Use
	Type
	Default Value

	MEMORYTRANS
	Purpose
	Server Use
	Type
	Default Value

	MAXSQLDOP
	Purpose
	Server Use
	Type
	Default Value

	MAXSQLTHRDPOOL
	Purpose
	Server Use
	Type
	Default Value

	MAXSRVLOGFILES
	Purpose
	Server Use
	Type
	Default Value

	MAXBKPLOGFILES
	Purpose
	Server Use
	Type
	Default Value

	TCPKEEPALIVE
	Purpose
	Server Use
	Type
	Default Value

	PORTS
	Purpose
	Server Use
	Type
	Default Value

	PATH
	Purpose
	Server Use
	Type

	6.3 Using Disk Partitions as Datafiles
	Why Use Partitions?
	Check for Partitions That Contain the First Sector on UNIX
	Checking Partitions with File Systems on UNIX
	Checking for Swap Partitions on UNIX
	Declaring a Partition in a Configuration File
	MS Windows
	Linux

	7 Using the Enterprise Manager
	7.1 Starting the Enterprise Manager
	Solaris
	Linux

	7.2 Remote Administration
	7.3 Creating a Database
	7.4 Stopping a Database
	7.5 Monitoring Database Server
	7.6 Managing Database Server Operation Control
	7.7 Managing Database Users
	7.8 Managing Datafiles
	7.9 Managing Backups
	7.10 Managing Open Connections
	7.11 Managing Active Transactions
	7.12 Monitoring a Database
	UNIX
	Changing the Refresh Interval
	Taking an Activity Snapshot

	7.13 Restoring a database
	7.14 Scheduling tasks
	Executing a User-defined Script
	Unix
	Windows

	8 Collecting the Versions of a Database
	How the Collect Versions Mechanism Works
	Automatic Version Collection
	Kinds of Version Collections
	Collecting Deleted Objects Without Older Versions
	Collecting Unused Transaction Objects
	Data Compaction
	Scheduled Collection on MS Windows
	Version Collection Log File

	9 Administration Commands
	Database Shutdown Restart
	Managing Datafiles
	Disk Mirroring
	Using disk partitions
	Managing Users
	Managing Connections
	Managing Transactions
	Managing Versions
	Monitoring a Database
	Extending the Page Server Cache
	Extending the Object Table Cache
	Changing the Run Frequency of Operations
	Managing License Keys

	10 Database Transactional Replication
	10.1 Introduction
	Feature Overview
	Replication Benefits

	10.2 Replication Establishing and Disestablishing
	Before Establishing Replication
	Establishing Replication
	Retry or Noretry Mode
	Disestablishing Replication
	Swapping Roles Between Master and Replica

	10.3 Replication Monitoring
	Replication status

	10.4 Resynchronization at restart of after replica failure
	Shutdown Restart
	Network or Replica Failure
	Switching to the replica in case of master failure

	11 Database Snapshot Replication
	11.1 Introduction
	Feature Overview
	Benefits
	Design Overview

	11.2 Replication Establishing
	Before Establishing Replication
	Establishing Replication
	Publishing Changes
	Disestablishing Replication

	11.3 Replication Monitoring
	Publisher Sate
	Subscriber Sate

	11.4 mt_xsr utility
	mt_xsr publish
	mt_xsr subscribe
	mt_xsr describe
	mt_xsr unpublish
	mt_xsr unsubscribe

	12 Database Backup and Restore
	12.1 Introduction
	Full and Incremental Backup
	Parallel Backup

	12.2 Running a Full or Incremental Backup
	Running a Full Backup
	Running an Incremental Backup
	Automated Backups
	Backup Journal Files

	12.3 Restore
	12.4 Running a Parallel Backup
	12.5 Parallel Restore

	Appendix A Starting Matisse Server as a Windows Service
	A.1 Introduction
	A.2 Installation
	A.3 Specifying Matisse Server and Its Parameters
	A.4 Starting and Stopping the Matisse Server Service
	Start:
	Stop:

	A.5 Uninstall

	Index

